Answer:
Classifying stars according to their spectrum is a very powerful way to begin to understand how they work. As we said last time, the spectral sequence O, B, A, F, G, K, M is a temperature sequence, with the hottest stars being of type O (surface temperatures 30,000-40,000 K), and the coolest stars being of type M (surface temperatures around 3,000 K). Because hot stars are blue, and cool stars are red, the temperature sequence is also a color sequence. It is sometimes helpful, though, to classify objects according to two different properties. Let's say we try to classify stars according to their apparent brightness, also. We could make a plot with color on one axis, and apparent brightness on the other axis, like this:
Explanation:
Answer:
λ=2167.6 nm
The wavelength of light emitted is 2167.6 nm.
Explanation:
We recall that Eₙ=
since there was transition from n7 to n=4 we will first calculate the change in the energy i.e ΔE
ΔE=E₄-E₇
ΔE=
ΔE=-9.1760*10^-20 J
Now:
|ΔE|=Energy of photon=h*v=h*c/λ
λ=h*c/|ΔE|
λ=
λ=2.1676*10^-6 m
λ=2167.6*10^-9 m
λ=2167.6 nm
The wavelength of light emitted is 2167.6 nm.
In the reaction 2co ( g) + o2( g) → 2co2( g), the ratio of moles of oxygen used to moles of co2produced is 1:2.