Answer:
Apply the following formulae horizontally And get A value for time
Remember horizontal acceleration is zero
and then to find the height apply the same above equation vertically...remember vertical initial velocity is zero
<span>238,900 mi hope it helps :)</span>
Answer:
244mm
Explanation:
I₁ = 3.35A
I₂ = 6.99A
μ₀ = 4π*10^-7
force per unit length (F/L) = 6.03*10⁻⁵N/m
B = (μ₀ I₁ I₂ )/ 2πr .........equation i
B = F / L ..........equation ii
equating equation i & ii,
F / L = (μ₀ I₁ I₂ )/ 2πr
Note F/L = B = F
F = (μ₀ I₁ I₂ ) / 2πr
2πr*F = (μ₀ I₁ I₂ )
r = (μ₀ I₁ I₂ ) / 2πF
r = (4π*10⁻⁷ * 3.35 * 6.99) / 2π * 6.03*10⁻⁵
r = 1.4713*10⁻⁵ / 6.03*10⁻⁵
r = 0.244m = 244mm
The distance between the wires is 244m
Answer:
(a) F = 320
(b) = F = -5.1625
Explanation:
The formula that converts degree Celsius (C) to degree Fahrenheit (F) is:
F = 1.8C + 32
Solving (a): F = 2C
Substitute 2C for F in the above equation
F = 1.8C + 32
2C = 1.8C + 32
Collect like terms
2C - 1.8C = 32
0.2C = 32
Multiply both sides by 5
5 * 0.2C = 32 * 5
C = 160
Recall that F = 2C
F = 2 * 160
F = 320
Solving (b): F = ¼C
Substitute ¼C for F in the above formula
F = 1.8C + 32
¼C = 1.8C + 32
Convert fraction to decimal
0.25C = 1.8C + 32
Collect like terms
0.25C - 1.8C = 32
-1.55C = 32
Divide both sides by -1.55
C = 32/(-1.55)
C = -32/1.55
C = -20.65
Recall that: F = ¼C
F = -¼ * 20.65
F = -5.1625
Throw it sideways and try to make it spin around but it needs to be thrown high up then it should kinda glide down