Answer:
D.yes,low weight does not...
I = V/Z
V = voltage, I = current, Z = impedance
First let's find the total impedance of the circuit.
The impedance of the resistor is:
= R
R = resistance
Given values:
R = 1200Ω
Plug in:
= 1200Ω
The impedance of the inductor is:
= j2πfL
f = source frequency, L = inductance
Given values:
f = 59Hz, L = 2.4H
Plug in:
= j2π(59)(2.4) = j889.7Ω
Add up the individual impedances to get the Z, and convert Z to polar form:
Z =
+ 
Z = 1200 + j889.7
Z = 1494∠36.55°Ω
I = V/Z
Given values:
V = 170∠0°V (assume 0 initial phase)
Z = 1494∠36.55°Ω
I = 170∠0°/1494∠36.55°Ω
I = 0.1138∠-36.55°A
Round the magnitude of I to 2 significant figures and now you have your maximum current:
I = 0.11A
Answer:
Distance moved = 42 meters
Mag and Dir = 10 meters northward
Explanation:
Distance is total distance traveled which = 22+16+4 = 42 meters
Displacement is the amount of distance moved from the start point to the end point straight line so our equation for the magnitude is 22-16+4 = 10 meters. Then the direction is northward from the start point. This answer would also be a vector because it has a magnitude and direction.
I would say the answer is B. That's what makes the most sense to me but I'm not certain.
Answer:
4 days
either multiply 128 by .5 until you get to 2 counting each time or use 2 formulas ln(n2/n1)=-k(t2-t1) to get k then input k into ln(2)=k*t1/2
n2 is final amount and n1 is beginning and t is either time elapsed as in the first formula or the actual half life that is t1/2
Explanation: