1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kherson [118]
3 years ago
8

A system absorbs 194 kj of heat and the surroundings do 120 kj of work on the system. internal eneergy change

Physics
1 answer:
notsponge [240]3 years ago
6 0
We can solve the problem by using the first law of thermodynamics, which states that:
\Delta U = Q-W
where
\Delta U is the change in internal energy of the system
Q is the heat absorbed by the system
W is the work done by the system

In our problem, the heat absorbed by the system is Q=+194 kJ, while the work done is W=-120 kJ, where the negative sign means the work is done by the surroundings on the system. Therefore, the variation of internal energy is
\Delta U= Q-W=+194 kJ - (-120 kJ)=+314 kJ
You might be interested in
Sally travels by car from one city to another. She drives for 26.0 min at 83.0 km/h, 52.0 min at 41.0 km/h, and 45.0 min at 60.0
Anna007 [38]
The average speed is determined by the following formula:

average speed = [sum of (speed * time for which that speed was traveled)] / total time

average speed = [(83 * 26 + 41 * 52 + 60 * 45 + 0 * 15) / 60] / [(26 + 52 + 45 + 15) / 60]
*note: The division by 60 is to convert minutes to hours. We see that the 60 cancels from the top and bottom of the division

average speed = 50.65 km/hr

The total distance traveled is equivalent to the numerator of the fraction we used in the first part. This is:
Distance = (83 * 26 + 41 * 52 + 60 * 45 + 0 * 15) / 60

Distance = 116.5 kilometers
6 0
3 years ago
An 85,000 kg stunt plane performs a loop-the-loop, flying in a 260-m-diameter vertical circle. at the point where the plane is f
konstantin123 [22]
A) When the plane is flying straight down, there are three forces acting on it:
- the centripetal force  F=m \frac{v^2}{r}, directed toward the center of the circle (so, horizontally)
- the weight of the plane: W=mg, downward, so vertically
- a third force, given by the propulsion of the plane, which is accelerating it towards the ground (because the problem says that the plane has an acceleration of a=12 m/s^2 towards the ground)

The radius of the circle is r= \frac{260 m}{2} = 130 m, so the centripetal force acting on the plane is
F_c=m \frac{v^2}{r} = \frac{(85000 kg)(55 m/s)^2}{130 m}=1.98 \cdot 10^6 N
On the vertical axis, we have two forces: the weight
W=mg=(85000 kg)(9.81 m/s^2)=8.34 \cdot 10^5 N
and the other force F given by the propulsion. Since we know that their sum should generate an acceleration equal to a=12 m/s^2, we can find the magnitude of this other force F by using Newton's second law:
F+mg=ma
F=m(a-g)=(85000kg)(12 m/s^2-9.81 m/s^2)=1.86 \cdot 10^5 N

So, the net force acting on the plane will be the resultant of the centripetal force (acting in the horizontal direction) and the two forces W and F (acting in the vertical direction):
R= \sqrt{(F_c^2+(W+F)^2}=
= \sqrt{(1.98\cdot 10^6N)^2+(8.34 \cdot 10^5N+1.86 \cdot 10^5 N)^2}  =2.23 \cdot 10^6 N

(b) The tangent of the angle with respect to the horizontal is the ratio between the sum of the forces in the vertical direction (taken with negative sign, since they are directed downward) and the forces acting in the horizontal direction, so:
\tan \theta =  \frac{-(W+F)}{F_c}= -0.5
And so, the angle is
\theta = \arctan (-0.5)=-26.8 ^{\circ}
 
7 0
3 years ago
You obtain a 100-W light bulb and a 50-W light bulb. Instead of connecting them in the normal way, you devise a circuit that pla
lesantik [10]

Answer:

When they are connected in series

     The  50 W bulb glow more than the 100 W bulb

Explanation:

From the question we are told that

     The power rating  of the first bulb is P_1  = 100 \ W

      The power rating of the second bulb is  P_2  =  50 \ W

     

Generally the power rating of the first bulb is mathematically represented as

      P_1  =  V^2 R

Where  V is the normal household voltage which is constant for both bulbs

  So  

        R_1  =  \frac{V^2}{P_1 }

substituting values

        R_1  =  \frac{V^2}{100}

Thus the resistance of the second bulb would be evaluated as

       R_2  =  \frac{V^2}{50}

From the above calculation we see that

        R_2  >  R_1

This power rating of the first bulb can also be represented mathematically as  

        P_  1  =  I^2_1  R_1

This power rating of the first bulb can also be represented mathematically as    

       P_  2  =  I^2_2 R_2

Now given that they are connected in series which implies that the same current flow through them so

       I_1^2 =  I_2^2

This means  that

       P \ \alpha  \  R

So  when they are connected in series

     P_2  >  P_1

This means that the 50 W bulb glows more than the 100 \ W bulb

3 0
4 years ago
The atomic mass of an element is
inessss [21]

Here are the answers to the question. Make sure to give a valid reason, please.

A. the sum of the protons and neutrons in one atom of the element.

B. a ratio based on the mass of a carbon-12 atom.

C. a weighted average of the masses of an element's isotopes.

D. twice the number of protons in one atom of the element.

6 0
4 years ago
Predict the deformation or elongation of a spring that has a constant of elasticity of 400 N/m when a force of 75 N is applied i
morpeh [17]

Answer:

Explanation:

Give that,

Spring constant (k)=40N/m

Force applied =75N

Since the force is applied to the right, we don't know if it is compressing or stretching the spring

So let assume it compress

Using hooke's law

F=-ke

e=-F/k

Then, e=-75/40

e=-1.875m

The deformation is 1.875m.

Let assume it stretch

Using hooke's law

-F=-ke

e=F/k

Then, e=75/40

e=1.875m

The elongation is 1.875m

3 0
3 years ago
Other questions:
  • Many kayaks are made of plastic and other composite materials that are denser than water. How are such kayaks able to float in w
    8·1 answer
  • When designing a user interface, the most important information should be placed in the ______ of the screen.
    10·1 answer
  • A 0.013 rubber stopper attached to a 0.93 string is swung in a circle if the tension in the string is 0.35 what is the period of
    6·1 answer
  • A cell membrane consists of an inner and outer wall separated by a distance of approximately 10nm. Assume that the walls act lik
    15·1 answer
  • Does sound travel outside earth's atmosphere in space explain
    5·1 answer
  • Standing at a crosswalk, you hear a frequency of 540 Hz from the siren of an approaching ambulance. After the ambulance passes,
    11·1 answer
  • A dock worker pulls two boxes connected by a rope on a horizontal floor, as shown in the figure . All the ropes are horizontal,
    14·2 answers
  • A 2.43ug particle moves at 1.97 x 108 m/s. What is its momentum?
    5·1 answer
  • A golfer hits a shot to a green. The ball leaves the club at a speed of 20 m/s at an angle 32° above the horizontal. It rises to
    6·1 answer
  • Stephen is looking through some design diagrams created for a specific application.He spots a diagram which uses a parallelogram
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!