Answer:
U₂ = 400 KJ
Explanation:
Given that
Initial energy of the tank ,U₁= 800 KJ
Heat loses by fluid ,Q= - 500 KJ
Work done on the fluid ,W= - 100 KJ
Sign -
1.Heat rejected by system - negative
2.Heat gain by system - Positive
3.Work done by system = Positive
4.Work done on the system-Negative
Lets take final internal energy =U₂
We know that
Q= U₂ - U₁ + W
-500 = U₂ - 800 - 100
U₂ = -500 +900 KJ
U₂ = 400 KJ
Therefore the final internal energy = 400 KJ
Data:
mass, m = 30.94 g
density, d = 19.32 g/cm^3
Formula: d = m / v => v = m / d = 30.94 g / 19.32 g/cm^3 = 1.60 cm^3
Then, the answer is the option C.
a)
for the puck :
F = force applied in the direction of pull
N = normal force on the puck in upward direction by the surface of table
W = weight of the puck in down direction due to force of gravity
b)
along the vertical direction , normal force balance the weight of the puck , hence the net force is same as the force of pull F .
so F = ma where m = mass of puck , a = acceleration
Fnet = F
c)
since the net force acts in the direction of force of pull F , hence the puck accelerates in the same direction .
The handle of a metal pot gets warm when the water inside the pot starts to boil
Answer:
The change in potential energy is 
Explanation:
From the question we are told that
The magnitude of the uniform electric field is 
The distance traveled by the electron is 
Generally the force on this electron is mathematically represented as
Where F is the force and q is the charge on the electron which is a constant value of 
Thus


Generally the work energy theorem can be mathematically represented as

Where W is the workdone on the electron by the Electric field and
is the change in kinetic energy
Also workdone on the electron can also be represented as
Where
considering that the movement of the electron is along the x-axis
So

substituting values


Now From the law of energy conservation
Where
is the change in potential energy
Thus
