Answer:
10.76 grams
Explanation:
Given that the amount of
is 25.0 grams.
Mass of 1 mole of
= 158 grams
The number of atoms in 1 mole of
is 4.
Mass of oxygen in 1 mole of
= 16\times 4 = 68 grams.
Here, 158 grams of
has 68 grams of oxygen
So, the amount of oxygen in 1 gram of
= 68/158 grams
Therefore, the amount of oxygen in 1 gram of
=
grams
=10.76 grams
Hence, 25 grams of
has 10.76 grams of oxygen.
Answer:
Tribhuvan University is a university in Tribhuvan, Nepal. Tribhuvan University (TU) is a pioneering higher education institution in Nepal, having been founded in 1959. ......
Pokhara University... Kathmandu University...
Purbanchal University is located in Purbanchal, India.
Lumbini Bauddha University (LBU) is a university in Lumbini, Nepal...
Nepal Sanskrit University is a university dedicated to the study of Sanskrit in Nepal.
Midwestern University is a public university in the Midwest...
Nepal Open University is a public university in Nepal.
Explanation:
<span>the table say that at 20 degree celcius 88.0g of NANO3 will remain dissolved in
100 gm of H2O
so at 20 degree celcius 80.0g of H20 will dissolve
(88.0g)x(80g/100g)=70.4g of NANO3
so at 20 degree celcius
86.3g-70.4g= 15.9 gram of NANO3 will come out of solution.</span>
Answer:
Top-Toluene
Middle-Water
Bottom-Chloroform
Explication:
Chloroform is on the bottom layer because it is the densest liquid.
Toluene is on the top because it is the least dense.
Water is between the two because it’s density is between chloroform and toluene.
Answer:
Explanation:
The number of moles of solute is equal to product of the molar concentration (molarity) and the volume (in liters) of solution.
Since the volumes and the molar concentrations of the<em> NaOH </em>and <em>HCl </em>solutions mixed are equal, each one of them contributes the same number of moles of solute.
Since every mol of NaOH produces one mol of OH⁻ ions and every mol of HCl produces one mol of H⁺ ion, the number of moles of OH ⁻ and H⁺ in solution are equal.
Thus, OH⁻ and H⁺ ions will be neutralized by the reaction:
- OH⁻ (aq) + H⁺ (aq) ⇄ H₂O (l)
Which is strongly shifted to the right and has <em>neutral pH</em>.
Hence, you conclude that the approximate <em>pH of the solution is neutral.</em>