We have that the molecular weight (3sf) of the compound (g/mol)

From the question we are told
A solution made by mixing 20.0 g of a non-volatile compound with 125 mL of water at 25°C has a vapor pressure of 22.67 torr. What is the molecular weight (3sf) of the compound (g/mol).
Generally the equation for the Rouault's law is mathematically given as
P=P_0 N

Therefore
The molecular weight (3sf) of the compound (g/mol)
For more information on this visit
brainly.com/question/17756498
Molality can be expressed by moles of solute over
kilograms of solvent. The question asks the molality of 0.25m NaCl. 0.25m NaCl
is equal to 0.25 moles of NaCl over 1 kg of water.
Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.
Answer:
backward, opposite, retrograde
Explanation:
why, i just got it right when i put that.
<h3>Ferric Oxide:-</h3>


<h3><u>C</u><u>a</u><u>l</u><u>c</u><u>i</u><u>u</u><u>m</u><u> </u><u>H</u><u>y</u><u>d</u><u>r</u><u>o</u><u>x</u><u>i</u><u>d</u><u>e</u><u>:</u><u>-</u></h3>

