Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Mass of the continent</h3>
Density
is defined as a relation between mass
and volume
:
(1)
Where:
is the average density of the continent
is the mass of the continent
is the volume of the continent, which can be estimated is we assume it as a a slab of rock 5300 km on a side and 37 km deep:

Finding the mass:
(2)
(3)
(4) This is the mass of the continent
<h3>b) Kinetic energy of the continent</h3>
Kinetic energy
is given by the following equation:
(5)
Where:
is the mass of the continent
is the velocity of the continent
(6)
(7) This is the kinetic energy of the continent
<h3>c) Speed of the jogger</h3>
If we have a jogger with mass
and the same kinetic energy as that of the continent
, we can find its velocity by isolating
from (5):
(6)
Finally:
This is the speed of the jogger
if i am changing velocity, i must also have <u>acceleration</u> and a net <u>force</u>
<h2>
<u>Newton's</u><u> </u><u>first</u><u> </u><u>law</u><u> </u><u>of</u><u> </u><u>motio</u><u>n</u></h2>
- Newton's first law of motion states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
According to Newton's first law of motion, without a force acting on an object, its velocity does not change. The net force acts on an object to change its velocity and cause acceleration.
Read more about velocity:
brainly.com/question/4931057
Answer:
1. 
2. 
Explanation:
1. According to Newton's law of motion, the puck motion is affected by the acceleration, which is generated by the push force F.
In Newton's 2nd law: F = ma
where m is the mass of the object and a is the resulted acceleration. So in the 2nd experiment, if we double the mass, a would be reduced by half.

Since the puck start from rest, in the 1st experiment, to achieve speed of v it would take t time

Now that acceleration is halved:


You would need to push for twice amount of time 
2. The distance traveled by the puck is as the following equation:

So if the acceleration is halved while maintaining the same d:

As
, then
. Also 



So t increased by 1.14
Answer:
option a is correct
Explanation:
<h2>I hope it's help you ❣️❣️</h2>
If the pressure above a solution containing a gas solute is reduced, the limit of the gas's solubility will decrease.