solution:
As Given plane is flying in east direction.
It throws back some supplies to designated target.
Time taken by the supply to reach the target =10 seconds
g = Acceleration due to gravity = - 9.8 m/s²[Taken negative as object is falling Downwards]
As we have to find distance from the ground to plane which is given by d.
d = 
=
meters
Distance from the ground where supplies has to be land to plane = Option B =490 meters
1) 211m/s
2)240<span>°
3)759,600m or 759.6 km</span>
Answer:

ΔK = 2.45 J
Explanation:
a) Using the law of the conservation of the linear momentum:

Where:


Now:

Where
is the mass of the car,
is the initial velocity of the car,
is the mass of train,
is the final velocity of the car and
is the final velocity of the train.
Replacing data:

Solving for
:

Changed to cm/s, we get:

b) The kinetic energy K is calculated as:
K = 
where M is the mass and V is the velocity.
So, the initial K is:



And the final K is:




Finally, the change in the total kinetic energy is:
ΔK = Kf - Ki = 22.06 - 19.61 = 2.45 J
By Newton's 2nd law of motion, F = ma, where F is force, m is mass, and a is acceleration.
Rearranging this equation to find acceleration would give us:
a = F/m
The horizontal force to the right is 10N, because the box is pushed to the right with a force of 20N, and the friction force of 10N opposes that, so:
20N - 10N = 10N
The mass is 2kg.
Putting these values into the equation gives us:
a = F/m
= 10/2
= 5ms^-2
The acceleration of the box is 5ms^-2
They all have segmented limbs, a hard exoskeleton, a pair of antennae and a segmented body.