Answer:
The phase constant is 7.25 degree
Explanation:
given data
mass = 265 g
frequency = 3.40 Hz
time t = 0 s
x = 6.20 cm
vx = - 35.0 cm/s
solution
as phase constant is express as
y = A cosФ ..............1
here A is amplitude that is =
=
= 6.25 cm
put value in equation 1
6.20 = 6.25 cosФ
cosФ = 0.992
Ф = 7.25 degree
so the phase constant is 7.25 degree
Answer:
V = 10.88 m/s
Explanation:
V_i =initial velocity = 0m/s
a= acceleration= gsinθ-
cosθ
putting values we get
a= 9.8sin25-0.2cos25= 2.4 m/s^2
v_f= final velocity and d= displacement along the inclined plane = 10.4 m
using the equation


v_f= 7.04 m/s
let the speed just before she lands be "V"
using conservation of energy
KE + PE at the edge of cliff = KE at bottom of cliff
(0.5) m V_f^2 + mgh = (0.5) m V^2
V^2 = V_f^2 + 2gh
V^2 = 7.04^2 + 2 x 9.8 x 3.5
V = 10.88 m/s
Answer:
Current will be 81.7 mA
Which is not given in bellow option
Explanation:
We have given capacitance 
Resistance R = 500 ohm
Voltage V = 12 volt
We know that time constant of RC circuit of RC circuit is given by

Time is given as t = 1 sec
We know that current in RC circuit is given by

So current 
Which is not given in the following option
Yes omg yes I literally have the same question and need to find the answer
A., 101.7 km/h is the correct answer for this question