Answer:
End point
Explanation:
The point at which the indicator changes color is called the endpoint. So the addition of an indicator to the analyte solution helps us to visually spot the equivalence point in an acid-base titration
#correct me if I'm wrong
keep safe and study hard
brainliest please thank you
<h3>
Answer:</h3>
The total concentration of ions in a 0.75 M solution of HCl is 1.5 M
That is; 0.75 M H⁺ and 0.75 M Cl⁻
<h3>
Explanation:</h3>
- Concentration or molarity is the number of moles of a compound or an ion contained in one liter of solution. It is measured in moles per liter (M).
- The concentration of ions making a compound is determined by the ratio of moles of the compound and the constituents ions.
- For instance, HCl dissociates to give H⁺ and Cl⁻
HCl(aq) → H⁺(aq) + Cl⁻(aq)
- Therefore, since the mole ratio between HCl and the constituent ions H⁺ and Cl⁻ is 1:1, then 0.75 M of HCl dissociates to give 0.75 M H⁺ and 0.75 m Cl⁻
- Hence the total concentration of ions in a 0.75 M solution of HCl is 1.5 M (0.75 M H⁺ and 0.75 M Cl⁻)
1) Silicon dioxide formula: SiO2 ....... 2 is a subscript for the O atom
2) From the formula you have 1 molecula of SiO2 contains 1 atom of SiO2
3) Then, 0.100 mol of SiO2 contains 0.1 mol of Si
4) Multiply by Avogadro's number: 0.100mol * 6.022*10^23 atoms/mol= 6.02*10^22 atoms
Answer: 6.02*10^22 atoms
From the fact that oxygen is in group 16 and carbon is in group 14, the structure of CO2 must be O=C=O. In methane, there is no bond between any of the hydrogen atoms. The structure of H2O2 is H–O–O–H.
Carbon is in group 14 hence it has four valence electrons and oxygen is in group 16 hence it has six valence electrons. This implies that each oxygen atom will share four electrons with carbon in a covalent bond to form the structure O=C=O.
In CH4, we know that carbon is tetravalent so it forms for bonds. Therefore, there is no bond between hydrogen atoms so it bonds with each hydrogen atom; hydrogen only forms one bond.
In H2O2, there is the peroxide ion that has the structure O-O. Hence, the correct structure of H2O2 is H–O–O–H.
Learn more: brainly.com/question/24775418
Answer:
Equilibrium concentrations of the gases are



Explanation:
We are given that for the equilibrium

Temperature, 
Initial concentration of



We have to find the equilibrium concentration of gases.
After certain time
2x number of moles of reactant reduced and form product
Concentration of



At equilibrium
Equilibrium constant
![K_c=\frac{product}{Reactant}=\frac{[H_2]^2[S_2]}{[H_2S]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7Bproduct%7D%7BReactant%7D%3D%5Cfrac%7B%5BH_2%5D%5E2%5BS_2%5D%7D%7B%5BH_2S%5D%5E2%7D)
Substitute the values



By solving we get

Now, equilibrium concentration of gases


