Remembering the equation Q=MCdeltaT where
q=is the amount of heat energy
M=mass
C=specific heat
deltaT= change in temperature
Therefore, using the equation we can substitute values and solve for q.
Q= (15 grams) (0.129 J/(gx°C))(85-22)
Q=(15) ((0.129 J/(gx°C)) (63)
Q=121.9 Joules
The energy needed to raise the temperature of 15 grams of gold from 22 degrees Celsius to 85 degrees Celsius is then 121.9 Joules or 122 Joules (if rounded up).
Approximate molecular masses:
Molecular mass of C = 12
Molecular mass of H = 1
Let n = moles required for CH₂.
Then
nCH₂ = 98
n(12 + 2*1) = 98
14n = 98
n = 7
Answer: The molecular formula is 7CH₂
Answer:
A, option is the correct answer of this question
To determine the moles in 40 grams of magnesium, we need the atomic weight. This can easily be found on a periodic table. For this problem, let's use 24.305 grams/mole.
We are going to set up an equation to determine this problem. In this equation, we want all our units to cancel out except for 'moles.'

In this, we can see that the unit 'grams' will cancel out to leave us with moles.
In solving the equation, we determine that there are approximately 1.65 moles of Magnesium.
Answer:
A model or simulation is only as good as the rules used to create it. It is very difficult to create an entirely realistic model or simulation because the rules are based on research and past events. The main disadvantage of simulations is that they aren't the real thing.
Explanation: