Answer:
1,000 meters in 1 kilometer
Explanation:
Answer:
The final temperature at 1050 mmHg is 134.57
or 407.57 Kelvin.
Explanation:
Initial temperature = T = 55
= 328 K
Initial pressure = P = 845 mmHg
Assuming final to be temperature to be T' Kelvin
Final Pressure = P' = 1050 mmHg
The final temperature is obtained by following relation at constant volume

The final temperature is 407.57 K
Answer:
1.59 x 10⁻²⁵ J.
Explanation:
- The energy of a photon is calculated Planck - Einstein's equation:
E = h ν
, where
E is the energy of the photon,
h is Planck's constant <em>(h = 6.626 x 10
⁻³⁴ J.s)</em>
ν is the frequency of the photon
-
There is a relation between the frequency (ν
) and wave length (λ).
λ.ν = c,
where c is the speed of light in vacuum (c = 3
.0 x 10
⁸ m/s).
λ = 125 cm = 1.25 m.
<em>Now, E = h.c/λ.</em>
∴ E = h.c/λ = (6.626 x 10
⁻³⁴ J.s) (3
.0 x 10
⁸ m/s) / (1.25 m) = 1.59 x 10⁻²⁵ J.
Answer:
704.6 g CO2
Explanation:
MM sucrose = 342.3 g/mol
MM CO2 = 44.01 g/mol
g CO2 = 456.7 g sucrose x (1 mol sucrose/MM sucrose) x (12 moles CO2/1 mol sucrose) x (MM CO2/1mol CO2) = 704.6 g CO2
The energy of the wave does not move through anything