1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Law Incorporation [45]
3 years ago
12

A spherical bowling ball with mass m = 3.6 kg and radius R = 0.101 m is thrown down the lane with an initial speed of v = 8.7 m/

s. The coefficient of kinetic friction between the sliding ball and the ground is μ = 0.28. Once the ball begins to roll without slipping it moves with a constant velocity down the lane.
1) What is the magnitude of the angular acceleration of the bowling ball as it slides down the lane?
2) What is magnitude of the linear acceleration of the bowling ball as it slides down the lane?
3) How long does it take the bowling ball to begin rolling without slipping?
4) How far does the bowling ball slide before it begins to roll without slipping?
5) What is the magnitude of the final velocity?
Physics
1 answer:
luda_lava [24]3 years ago
4 0

Answer:

1)  The magnitude of the angular acceleration = 67.92 rad/s^{2}

2) Magnitude of the linear acceleration = 2.744 m/s^{2}

3) How long does it take the bowling ball to begin rolling without slipping = 0.906 s

4) How long does it take the bowling ball to begin rolling without slipping = 6.75 m

5) the final velocity is 6.21 m/s

Explanation:

the given information :

Bowling mass m = 3.6 kg

Radius = 0.101 m

Initial speed v_{0} = 8.7 m/s

Coefficient of kinetic friction μ = 0.28

1) he magnitude of the angular acceleration of the bowling ball is

F = m a

F_{g}  = μ N  ,   N = m g

F_{g}  = μ m g

1) The magnitude of the angular acceleration of the bowling ball as it slides down the lane:

momen inersia of Bowling ball I = (2/5) m R^{2}

torque τ = I α

τ = F R

I α = F R

(2/5) m R^{2}  α = μ m g R

α = (5 μ g / 2R) μ g R

  = (5 x 0.28 x 9.8/ 2 x 0.101)

  = 67.92 rad/s^{2}

2) Magnitude of the linear acceleration of the bowling ball as it slides down the lane

F = - F_{g} , F_{k} is the force of kinetic friction

m a = - μ m g, remove m

the magnitude of linear accelaration is

a = μ g

  = (0.28) (9.8)

  = 2.744 m/s^{2}

3) The bowling ball takes time to begin rolling without slipping:

The linear speed, v_{t} = v_{0} - a t

                            v_{t}  =  v_{0} - μ g t

the angular speed, ω = ω0 + α t

                                ω = ω0 + (5  μ g/2R ) t

v_{t} = ω R

v_{0} - μ g t = ω0 R + (5  μ g/2R ) t R

7 μ g t/2 = v_{0} + ω0 R

hence,

t = (2 v_{0} + ω0 R)/  7 μ g

ω0 = 0 (no initial spin), therefore

t = 2 v_{0} / 7 μ g

 = 2 x 8.7 / 7 (0.28) (9.8)

 = 0.906 s

4) How long it takes for the bowling ball to begin rolling without slipping, S

S = v_{0}  t - (1/2) a t^{2}

  = (8.7) (0.906) - (1/2) (2.744) 0.906^{2}

  = 6.75 m

5) The final velocity

v_{t} = v_{0} - a t

v_{t} = 8.7 - (2.744) (0.906)

v_{t} = 6.21 m/s

You might be interested in
In the equation vx^2=v0x^2+2ax(x-x0) what does the terms vx, v0x, x, and x0 stand for respectively?
tatuchka [14]

B. velocity at position x, velocity at position x=0, position x, and the original position

In the equation

v_{x}^{2} = v_{ox}^{2} +2 a x (x - x₀)

v_{x} = velocity at position "x"

v_{ox} = velocity at position "x = 0 "

x = final position

x_{o} = initial position of the object at the start of the motion

6 0
3 years ago
Read 2 more answers
The maximum wavelength that an electromagnetic wave can have and still eject electrons from a metal surface is 459 nm. What is t
spin [16.1K]

Answer:

2.7067 eV

Explanation:

h = Planck's constant = 6.626\times 10^{-34}\ m^2kg/s

c = Speed of light = 3\times 10^8\ m/s

\lambda_0 = Threshold wavelength = 459 nm

Work function is given by

W_0=\frac{hc}{\lambda_0}\\\Rightarrow W_0=\frac{6.626\times 10^{-34}\times 3\times 10^8}{459\times 10^{-9}}\\\Rightarrow W_0=4.33072\times 10^{-19}\ J

Converting to eV

1\ J=\frac{1}{1.6\times 10^{-19}}\ eV

4.33072\times 10^{-19}\ J=4.33072\times 10^{-19}\times \frac{1}{1.6\times 10^{-19}}\ eV=2.7067\ eV

The work function W0 of this metal is 2.7067 eV

4 0
3 years ago
Noooooooooooooooooooooooo
Afina-wow [57]

Answer:

yes

Explanation:

5 0
3 years ago
Read 2 more answers
When you are sitting a few feet from a fire, your skin feels warm. What forms of heat transfer are acting to transfer heat from
algol [13]
<span>In the question,' when you are sitting a few feet from the fire, your skin feels warmed. What form of heat transfer are acting to transfer heat from the fire to your skin, the correct option is A, that is, convection and radiation. Heat transfer is defined as the exchange of thermal energy between physical systems. The rate at which the heat is transfer depends on the temprature of the system and the properties of the intervening medium through which the heat is been transfered. There are three basic modes of heat transfer, these are: conduction, convection and radiation. Conduction is defined as the transfer of heat between two bodies through physical contact. When two bodies which have different temprature come in contact, there will be a transfer of heat energy between them until the two of them have the same temprature. Conduction usually occurs in solids and liquids; it occurs in gases also but it is extremely slow. Convection is the process by which heat is transfer in fluids, that is, liquids and gases. This is how convection operates: when a fluid is heated, it expands and it becomes lighter, this makes it to rise upward and move to the cooler part of the container, as it rises, it will be replaced by the unheated surrounding particles. This cycle continues until heat is evenly distributed all through the fluid. There are two types of convection: natural and forced convection. The heating of the earth surface by the sun ray is an example of natural convection while the air conditioner we use at home operates by mean of forced convection. Both conduction and convection require matter for heat transfer. Radiation is the transfer of heat from one place to another through electromagnetic waves. The hot body transfer heat by emitting electromagnetic waves. The properties of the electromagnetic waves depend on the temperature of the body. The higher the temperature the more intense the rate of emission of radiation. Radiation can occur in all objects and does not require matter for heat transfer. The heat of the sun reaches the earth surface by means of radiation. In the question given, as the air surrounding the fire were heated they rise and were replaced by the unheated air particles. The continuation of this cycle makes the heat energy to be transferred to the objects around. Thus, the heat from the fire was transferred via convection and radiation. </span>
8 0
3 years ago
Read 2 more answers
As a city planner, you receive complaints from local residents about the safety of nearby roads and streets. One complaint conce
WINSTONCH [101]

Answer:

a)   x₁ = 290.50 feet ,  x₂ = 169.74 feet , b)  v_max= 41 mph

Explanation:

For this exercise we will work in two parts, the first with Newton's second law to find the acceleration of vehicles

X Axis          fr = m a

Y Axis          N-W = 0

                    N = W = mg

The force of friction has the expression

                  fr = μ N

We replace

                 μ mg = ma

                 a = μ g

                 g = 32 feet / s²

Let's calculate the acceleration for each coefficient and friction

μ              a (feet / s2)

0.599       19.168

0.536       17,152

0.480       15.360

0.350        11.200

These are the acceleration values, for the maximum distance we use the minimum acceleration (a₁ = 11,200 feet / s²) and for the minimum braking distance we use the maximum acceleration (x₂ = 19,168 feet / s²)

                 v² = v₀² - 2 a x

When the speed stops it is zero

                 x₁ = v₀² / 2 a₁

                         

Let's reduce speed

            v₀ = 55mph (5280 foot / 1 mile) (1h / 3600s) = 80,667 feet / s²

Let's calculate the maximum braking distance

            x₁ = 80.667² / (2 11.2)

            x₁ = 290.50 feet

The minimum braking distance

            x₂ = 80.667² / (2 19.168)

            x₂ = 169.74 feet

b) maximum speed to stop at distance x = 155 feet

            0 = v₀² - 2 a x

            v₀ = √2 a x

We calculate the speed for the two accelerations

             v₀₁ = √ (2 11.2 155)

             v₀₁ = 58.92 feet / s

       

             v₀₂ = √ (2 19.168 155)

             v₀₂ = 77.08 feet / s

To stop at the distance limit in the worst case the maximum speed must be 58.92 feet / s = 40.85 mph = 41 mph

5 0
3 years ago
Other questions:
  • Two straight wires are in parallel and carry electrical currents in opposite directions with the same magnitude of 2.0A. The dis
    15·1 answer
  • A 139 kg physics professor has fallen into the Grand Canyon. Luckily, he managed to grab a branch and is now hanging 89 m below
    15·1 answer
  • The period-luminosity relation is critical in finding distances with
    11·1 answer
  • Humans start from a single cell. Eventually, as cells divide, they start to differentiate, or specialize. Some cells are special
    6·1 answer
  • how much current is in a circuit that includes a 9-volt battery and a bulb with a resistance of 3 ohms?
    9·1 answer
  • You throw a 3.00 N rock vertically into the air from ground level. You observe that when it is 15.0 m above the ground, it is tr
    7·1 answer
  • 3) A lead bullet initially at 30 C just melts upon striking a target. Assuming that all of the initial kinetic energy of the bul
    8·1 answer
  • Mary Jo went on riding her horse through the trails. Her pace was 8 km/hr. She left at 8:30 am and got back to the barn at 9:00
    10·1 answer
  • . Reem took a wire of length 10 cm. Her friend Nain took a wire of 5 cm of the same material and thickness both of them connecte
    5·1 answer
  • Give ten (10) words related to health on the grid. Write your answer on<br> a separate sheet.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!