1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
3 years ago
11

A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. the astronaut is able to throw a spare 10.0 kg

oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown.
Physics
2 answers:
Llana [10]3 years ago
6 0

There are other forces at work here nevertheless we will imagine it is just a conservation of momentum exercise. Also the given mass of the astronaut is light astronaut.

The solution for this problem is using the formula: m1V1=m2V2 but we need to get V1:

V1= (m2/m1) V2


V1= (10/63) 12 = 1.9 m/s will be the final speed of the astronaut after throwing the tank. 

Tanya [424]3 years ago
4 0

Answer:

The astronaut's final speed with respect to the shuttle after the tank is thrown is 1.9 m/s.

Explanation:

It is given that,

Mass of the astronaut, m = 63 kg

Mass of the oxygen tank, m' = 10 kg

Speed of the oxygen tank, v' = 12 m/s

Let v is the astronaut's final speed with respect to the shuttle after the tank is thrown. Initial momentum of the system i.e. astronaut + oxygen tank will be equal to 0. Using the conservation of momentum as :

p_i=p_f

0=mv+m'v'

v=\dfrac{m'v'}{m}

v=-\dfrac{10\times 12}{63}

v = -1.9 m/s

So, the astronaut's final speed with respect to the shuttle after the tank is thrown is 1.9 m/s.

You might be interested in
When did diesel locomotives replace steam locomotives?
liubo4ka [24]
To keep the energy going every day
7 0
4 years ago
What is the independent variable
Ludmilka [50]

Answer:

independent variables are variables in mathematical modeling, statistical modeling and experimental science

6 0
3 years ago
Read 2 more answers
A thin spherical shell has a radius of 0.70 m. An applied torque of 860 N m gives the shell an angular acceleration of 4.70 rad/
Artyom0805 [142]

Answer:

I=182.97\ kg-m^2

Explanation:

Given that,

Radius of a spherical shell, r = 0.7 m

Torque acting on the shell, \tau=860\ N

Angular acceleration of the shell, \alpha =4.7\ m/s^2

We need to find the rotational inertia of the shell about the axis of rotation. The relation between the torque and the angular acceleration is given by :

\tau=I\alpha

I is the rotational inertia of the shell

I=\dfrac{\tau}{\alpha }\\\\I=\dfrac{860}{4.7}\\\\I=182.97\ kg-m^2

So, the rotational inertia of the shell is 182.97\ kg-m^2.

7 0
3 years ago
The ability of your joints and muscles to move in their full range of motion is called
Studentka2010 [4]

Answer:

Dynamic flexibility

Explanation:

Dynamic flexibility can be generally defined as the ability of the body muscles and joints to move in full range of motion. High flexibility in these joints and muscles leads to the decreasing pain and injury in different parts of the body.

Proper warm up exercises are needed to be carried out that involves both the combination of controlling movements and stretching of the body, and this directly enhances the dynamic flexibility of the body.

The athletes and sports persons possesses a good dynamic flexibility of their body as they carry our different types of body exercises.

6 0
3 years ago
What are the differences between the practical and the ideal pendulum​
ankoles [38]

lf a heavy point mass is suspended by a weightless, inextensible and perfectly flexible string from a rigid support, then this arrangement is called simple pendulum.

In practice, however, these requirements cannot be fulfilled. So we use a practical pendulum.

A practical pendulum consists of a small metallic solid sphere suspended by a fine silk thread from a rigid support. This is the practical simple pendulum which is nearest to the ideal simple pendulum.

Note :

The metallic sphere is called the bob.

When the bob is displaced slightly to one side from its mean position and released, it oscillates about its mean position in a vertical plane.

4 0
3 years ago
Other questions:
  • A war wolf is a device used during the middle ages to assault fortifications with large rocks. A simple trebuchet is constructed
    5·1 answer
  • A light wave has a 670 {\rm nm} wavelength in air. Its wavelength in a transparent solid is420 {\rm nm} .a)What is the speed of
    6·1 answer
  • What is the potential energy of a 2,000-kg car parked at the top of a 30-m hill?
    9·2 answers
  • Which of the following is an accurate statement?
    12·1 answer
  • How much time would it take to go up to the moon and back
    10·2 answers
  • Would an astronauts mass change as she traveled from planet to planet? Explain.
    15·1 answer
  • Can someone pls explain this question to me. Thanks in advance! ​
    11·1 answer
  • Given: Saturated air changes temperature by 0.5°C/100 m. The air is completely saturated at the dew point. The dew point has bee
    6·1 answer
  • An object is dropped and falls freely to the ground with an acceleration of g. If it is thrown upward at an angle instead, its a
    12·1 answer
  • If a light transmitts threw a material does the material absorb it?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!