Answer:
Explanation:
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.
In 1897, J.J. Thomson discovered the electron by experimenting with a Crookes, or cathode ray, tube. He demonstrated that cathode rays were negatively charged. In addition, he also studied positively charged particles in neon gas.
Rutherford overturned Thomson's model in 1911 with his well-known gold foil experiment in which he demonstrated that the atom has a tiny and heavy nucleus. Rutherford designed an experiment to use the alpha particles emitted by a radioactive element as probes to the unseen world of atomic structure.
The Bohr model shows the atom as a small, positively charged nucleus surrounded by orbiting electrons. Bohr was the first to discover that electrons travel in separate orbits around the nucleus and that the number of electrons in the outer orbit determines the properties of an element.
The ion N³⁻ is called the azide ion. In its neutral state, it occurs as the element Nitrogen. The atomic number of Nitrogen is 7. When it turns into an anion (negatively charged ion), it gains 3 more electrons. That's why its net charge becomes -3. It means that the protons is still 7, but the electrons are now 10.
Overall charge = +7 + -10 = -3
Answer:
go to hellfhshahahahahahahahahaha aha
Explahhhhahah
Answer: For many calculators, including the TI –83 and TI 83 Plus, the [EE] button is used to enter scientific notation. The [EE] button can be found in yellow above the comma key [,].
Answer:
6ΔG°(f) H₂O = -229 Kj/mol
Explanation:
4NH₃(g) + 5O₂(g) => 4NO(g) + 6H₂O(g)
ΔG°(f) 4mol(-16.66Kj/mol) | 5mol(0Kj/mol) || 4mol(+86.71Kj/mol) | 6ΔG°(f) H₂O
Hess's Law
ΔG°(Rxn) = ∑ΔG°(f) Products - ∑ΔG°(f) Reactants
-957.9 Kj = [(4mol(+86.71Kj/mol)) + 6ΔG°(f) H₂O(g)] - [4mol(-16.66Kj/mol) + 5mol(0Kj/mol)]
-957.9 Kj = [4(86.7)Kj + 6ΔG°(f) H₂O] - [4(-16.66)Kj] = 346.84Kj + 6ΔG°(f) H₂O + 66.64Kj
ΔG°(f) H₂O = ((-957.9 - 346.84 -66.64)/6)Kj = -228.56 Kj ≅ -228.6 Kj*
*Verified with Standard Heat of Formation Table