Mass of Cl₂ : 164.01 g
<h3>Further explanation</h3>
A mole is a number of particles(atoms, molecules, ions) in a substance
This refers to the atomic total of the 12 gr C-12 which is equal to 6.02.10²³, so 1 mole = 6.02.10²³ particles
Can be formulated :
N = n x No
N = number of particles
n = mol
No = 6.02.10²³ = Avogadro's number
mol Cl₂ :

mass Cl₂(MW=71 g/mol) :

Empirical formula is the simplest ratio of whole numbers of components in a compound.
Assuming for 100 g of the compound
Cu As S
mass 48.41 g 19.02 g 32.57 g
number of moles 48.41 / 63.5 g/mol 19.02 / 75 g/mol 32.57 / 32 g/mol
= 0.762 mol = 0.2536 mol = 1.018 mol
divide by the least number of moles
0.762 / 0.2536 0.2536 / 0.2536 1.018 / 0.2536
= 3.00 = 1.00 = 4.01
once they are rounded off
Cu - 3
As - 1
S - 4
therefore empirical formula is Cu₃AsS₄
Answer:
Two moles of KClO3 decompose to form 5 moles of product.
Answer:
Either Carnivores or Heterotrophic.
Explanation:
Carnivorous organisms are the more obvious answers in this, but if you want a bit of pizazz, throw in Heterotrophic Fungi.
Answer:
In compound 1 the Tert butyl group occupies the equatorial position and the Bromine occupies the axial position and in compound 2 the Tert butyl occupies the axial and the bromine occupies equatorial positions. Compound 1 reacts faster than compound 2.
Explanation:
In cyclic organic compounds, substituents may occupy the axial or equatorial positions. The axial positions are aligned parallel to the symmetry axis of the ring while the equatorial positions are around the plane of the ring.
Bulky substituents have more room in the equatorial than in the axial position. This means that compound 1 is more stable than compound 2.
This is clear on the basis of stability of the molecules because compound 1 will react faster than compound 2 since the bulky tertiary butyl group in compound 1 occupy equatorial and not axial positions.