Answer:21
Explanation:every body said
Answer:
VAB = 20km/hr
Explanation:
<u>Given the following data;</u>
Velocity of car A, VA = 60km/hr
Velocity of car B, VB = 80km/hr
To find the relative velocity of B w.r.t A, VAB;
Since the two cars are moving in the same direction, we have;
VAB = VB - VA
Substituting into the equation, we have;
VAB = 80 - 60
<em>VAB = 20km/hr</em>
Therefore, the relative velocity of car B with respect to car A is 20 kilometers per hour.
True.
Depending how accurate the graph is plotted
The strength of the friction doesn't matter. Neither does the distance or the time the asteroid takes to stop. All that matters is that the asteroid has
1/2 (mass) (speed squared)
of kinetic energy when it lands, and zero when it stops.
So
1/2 (mass) (original speed squared)
is the energy it loses to friction in order to come to rest.
Answer:

Explanation:
Given:
- Length of the beam,

- speed of the beam,

- magnitude of the vertical magnetic field,

According to the Faraday's law the emf induced in a rod passing transversely through a magnetic field is given as:


