Answer:
Explanation:
Given
Lowest four resonance frequencies are given with magnitude
50,100,150 and 200 Hz
The frequency of vibrating string is given by

where n=1,2,3 or ...n
L=Length of string
T=Tension
Mass per unit length
When string is clamped at mid-point
Effecting length becomes 
Thus new Frequency becomes

i.e. New frequency is double of old
so new lowest four resonant frequencies are 100,200,300 and 400 Hz
Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
The original width was 94.71 cm
<span>The area decreased 33.1% </span>
<span>The equation for the final size is </span>
<span>2X^2 = 1.2 m^2 </span>
<span>X^2 - 0.6 m^2 </span>
<span>X^2 = 10000 * .6 cm </span>
<span>X = 77.46 cm (this is the width) </span>
<span>The length is 2 * 77.46 = 154.92 cm </span>
<span>The original length was 154.92 + 34.5 = 189.42 cm </span>
<span>The original width was 189.42 / 2 = 94.71 cm </span>
<span>The original area was 94.71 * 189.92 = 17939.9 cm^2 </span>
<span>The new area is 79.46 * 154.92 = 12000.1 cm^2 </span>
<span>The difference between the original and current area is 17939.9 - 12000.1 = 5939.86 cm^2 </span>
<span>The percentage the area decreased is 5939.86 ' 17939.9 = 33.1%</span>