Answer:
0.0321 g
Explanation:
Let helium specific heat
Assuming no energy is lost in the process, by the law of energy conservation we can state that the 20J work done is from the heat transfer to heat it up from 273K to 393K, which is a difference of ΔT = 393 - 273 = 120 K. We have the following heat transfer equation:
where is the mass of helium, which we are looking for:
4. Grass - Caterpillar - Hedgehog - Fox
5. Caterpillar, Rabbit, Mouse.
6. Cougar and Fox.
7. Bacteria
8. The bird, hedgehog, Fox and cougar would be effected since the Hedgehogs and birds would soon die out due to the loss of their food. Once they die out, the cougar and Fox would have no predators left to eat.
We know that
g = LcosΘ
<span>where g, L and Θ are centripetal gravity length, and angle of object
</span><span>ω² = g/LcosΘ </span>
<span>ω = √(g / LcosΘ) </span>
Answer:
Δx = 4.68 x 10⁻³ m = 4.68 mm
Explanation:
The distance between the consecutive maxima, in Young's Double Slit Experiment is given bu the following formula:
Δx = λD/d
So, the distance between the eighth order maximum and the fourth order maximum on the screen will be given as:
Δx = 4λD/d
where,
Δx = distance between eighth order maximum and fourth order maximum=?
λ = wavelength = 487 nm = 4.87 x 10⁻⁷ m
d = slit separation = 0.2 mm = 2 x 10⁻⁴ m
D = Distance between slits and screen = 48 cm = 0.48 m
Therefore,
Δx = (4)(4.87 x 10⁻⁷ m)(0.48 m)/(2 x 10⁻⁴ m)
<u>Δx = 4.68 x 10⁻³ m = 4.68 mm</u>