Answer:
Part A: 47.8 mi/h
Part B: 0.072 M/s
Part C: 0.144 M/s
Explanation:
Part A
The average speed or velocity (V) is the variation of the space divided by the variation of the time:
V = (241 - 2)/(8 -3)
V = 47.8 mi/h
Part B
As Part A, the average rate (r) of formation of I2 is the variation of the concentration divided by the variation of time:
r = (1.83 - 1.11)/(15 - 5)
r = 0.072 M/s
Part C
The rates of the substances are proportional of their number of moles (n) which are their coefficient, so:
rI2/nI2 = rHCl/nHCl
0.072/1 = rHCl/2
rHCl = 2*0.072
rHCl = 0.144 M/s
Answer:
V₂ = 6.0 mL
Explanation:
Given data:
Initial volume = 9.0 mL
Initial pressure = 500 mmHg
Final volume = ?
Final pressure = 750 mmHg
Solution:
According to Boyle's Law
P₁V₁ = P₂V₂
V₂ = P₁V₁ / P₂
V₂ = 500 mmHg × 9.0 mL / 750 mmHg
V₂ = 4500 mmHg .mL / 750 mmHg
V₂ = 6.0 mL
Answer:
D
Explanation:
We must study the reaction pictured in the question closely before we begin to attempt to answer the question.
Now, the reaction is a free radical reaction. This implies that only one electron is transferred. The transfer of one electron is shown using a half arrow rather than a full arrow. The both species are radicals (odd electron species) and contribute one electron each.
Hence we must show electron movements in both species using a half arrow.
It would be called the crest.
Happy to help! Have a great evening.
~Brooke❤️
Step one write the equation for dissociation of AgNO3 and NaCl
that is AgNO3-------> Ag+ + NO3-
NaCl--------> Na+ + Cl-
then find the number of moles of each compound
that is for AgNO3 = ( 1.4 x10^-3 ) x 25/1000= 3.5 x10^-5 moles
Nacl= (7.5 x10^-4)x 60/1000= 4.5 x10^-5 moles
from mole ratio the moles of Ag+= 3.5 x10^-5 moles and that of Cl-= 4.5 x10^-4 moles
then find the total volume of the mixture
that is 25ml + 60 Ml =85ml = 0.085 liters
The Ksp of Agcl = (Ag+) (cl-), let the concentration of Ag+ be represented by x and also the concentration be represented by x
ksp (1.8 x10^-10) is therefore= x^2
find the square root x=1.342 x10^-5
Ag+ in final mixture is = moles of Ag+/total volume - x
that is {(3.5 x10^-5)/0.085} - 1.342 x10^-5=3.98x10^-4
Cl- in the final mixture is =(4.5 x10^-5 /0.085) - 1.342 x10^-5= 5.16 x10^-4