1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
4 years ago
10

Please help ASAP!!

Physics
1 answer:
inessss [21]4 years ago
4 0

Answer:

at t=46/22, x=24 699/1210 ≈ 24.56m

Explanation:

The general equation for location is:

x(t) = x₀ + v₀·t + 1/2 a·t²

Where:

x(t) is the location at time t. Let's say this is the height above the base of the cliff.

x₀ is the starting position. At the base of the cliff we'll take x₀=0 and at the top x₀=46.0

v₀ is the initial velocity. For the ball it is 0, for the stone it is 22.0.

a is the standard gravity. In this example it is pointed downwards at -9.8 m/s².

Now that we have this formula, we have to write it two times, once for the ball and once for the stone, and then figure out for which t they are equal, which is the point of collision.

Ball: x(t) = 46.0 + 0 - 1/2*9.8 t²

Stone: x(t) = 0 + 22·t - 1/2*9.8 t²

Since both objects are subject to the same gravity, the 1/2 a·t² term cancels out on both side, and what we're left with is actually quite a simple equation:

46 = 22·t

so t = 46/22 ≈ 2.09

Put this t back into either original (i.e., with the quadratic term) equation and get:

x(46/22) = 46 - 1/2 * 9.806 * (46/22)² ≈ 24.56 m

You might be interested in
Some curious students hold a rolling race by rolling four items down a steep hill. The four items are a solid homogeneous sphere
Papessa [141]

Answer

The answer and procedures of the exercise are attached in the following archives.

Step-by-step explanation:

You will find the procedures, formulas or necessary explanations in the archive attached below. If you have any question ask and I will aclare your doubts kindly.  

8 0
3 years ago
Differentiate between s-block and p-block​
alexandr402 [8]

Explanation:

hope this helps you dear friend.

5 0
2 years ago
Read 2 more answers
An Atwood machine is constructed using a hoop with spokes of negligible mass. The 2.5 kg mass of the pulley is concentrated on i
alexandr1967 [171]

Explanation:

63 kg ice skater finishes her performance and crossed the finish line with a speed of 10.8 m/s

8 0
3 years ago
Will mark as brainlist for only correct answer
Crank

Answer:

low, low

Explanation:

Longer wavelengths will have lower frequencies, and shorter wavelengths will have higher frequencies.

Large amplitude waves contain more energy. The other is frequency, which is the number of waves that pass by each second. If more waves( or more wiggly lines)  pass by, more energy is transferred each second

4 0
3 years ago
The rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3 × 10-11 e-250/T and 2
Vlada [557]

Answer:

Calculate the ratio of the rates of ozone destruction by these catalysts at 20 km, given that at this altitude the average concentration of OH is about 100 times that of Cl and that the temperature is about -50 °C

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -50 °C = 223 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/223} = 9.78^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/223} = 2.95^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 330 * [Cl] / [OH]

Than, the concentration of OH is approximately 100 times of Cl, and the result will be that the reaction with Cl is 3.3 times faster than the  reaction with OH

Calculate the rate constant for ozone destruction by chlorine under conditions in the Antarctic ozone hole, when the temperature is about -80 °C and the concentration of atomic chlorine increases by a factor of one hundred to about 4 × 105 molecules cm-3

Knowing

Rate constants for the reactions of atomic chlorine and of hydroxyl radical with ozone are given by 3x10^{-11} e^{-255/T}  and 2x10^{-12} e^{-940/T}  

T = -80 °C = 193 K

The reaction rate will be given by [Cl] [O3] 3x10^{-11} e^{-255/193} = 8.21^{-12} [Cl] [O3]  

Than, the reaction rate of OH with O3 is

Rate = [OH] [O3] 2x10^{-12} e^{-940/193} = 1.53^{-14} [OH] [O3]

Considering these 2 rates we can realize the ratio of the reaction with Cl to the reaction with OH is 535 * [Cl] / [OH]

Than, considering the concentration of Cl increases by a factor of 100 to about 4 × 10^{5} molecules cm^{-3}, the result will be that the reaction with OH will be 535 + (100 to about 4 × 10^{5} molecules cm^{-3}) times faster than the  reaction with Cl

Explanation:

4 0
3 years ago
Other questions:
  • 60 points help ;-; Imagine that you are playing in a basketball game. Write 3-5 sentences describing different forces observed d
    7·1 answer
  • While a kettle boils, 0.018kg of water changes to steam
    14·1 answer
  • Koi is climbing through a crevice and places her feet so that her body is perpendicular as shown below she then rest in this spo
    11·1 answer
  • Why are some rocks smooth and others rough?
    8·1 answer
  • Altitude is the angle measured above ____.<br><br> North Pole<br> horizon<br> equator<br> zenith
    15·2 answers
  • Two cars are facing each other from opposite ends of a 500m long road. Car A begins travelling at a constant speed of 20m/s. At
    11·1 answer
  • In diving to a depth of 308 m, an elephant seal also moves 579 m due east of his starting point. What is the magnitude of the se
    8·1 answer
  • A student has an 80 g sample of a radioactive material that has a half-life of 20 seconds. How much material will he have left a
    5·1 answer
  • _ is where there are no particles or very few particles that are spaced out very far apart. (example: outer space)
    5·1 answer
  • The energy transfer diagram shows energy transfer in an MP3 player. Useful energy is transferred away from the MP3 player by lig
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!