Answer:
The final angular velocity is 20rad/s
Explanation:
We are given;
mass, m = 12 kg
radius, r = 0.25 m
Work done;W = 75 J
Moment of inertia of cylinder, I = (1/2) mr²
Thus,
I = (1/2) x 12 x 0.25² = 0.375 kg.m²
Now, from work energy theorem,
Work done = Change in kinetic energy
So, W = KE_f - KE_i
Now, Initial Kinetic Energy (KE_i) = 0
Final Kinetic Energy; KE_f = (1/2)Iω²
So, KE_f = (1/2) x 0.375 x ω²
KE_f = 0.1875 ω²
Now, W = 75 J
Thus,
From, W = KE_f - KE_i, we have;
75 = 0.1875 ω² - 0
75 = 0.1875 ω²
ω² = 75/0.1875
ω² = 400
ω = √400
ω = 20 rad/s
Answer:
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object
The answer is a Thermogram.
I just took the test :)
Answer: (A) The number of waves that pass a point in a certain amount of time.
Explanation:
Electromagnetic waves are categorized according to their frequency f or, equivalently, according to their wavelength λ = c/f. Visible light has a wavelength range from ~400 nm to ~700 nm.
Frequency: Is the number of waves that pass a certain point in a specified amount of time.
Trough: The low point of the wave cycle.
Wavelength: The distance between two successive peaks.
Electromagnetic wave: One of the waves that are propagated by simultaneous periodic variations of electric and magnetic field intensity.
If one m³ of that material holds 4,000 kg of it,
then 0.09 m³ holds
(0.09) x (4,000) = 360 kg of it
The force of gravity acting on 360 kg of anything
on the Earth's surface is
(mass) x (gravity)
= (360 kg) x (9.8 m/s²) = 3,528