Answer:
The Employee
Explanation:
Because it is there responsibility
Answer:
Explanation:
Products of oil in our everyday life:
(1) Petro-Chemical Feedstock: These are by product of Refining of Oil which it is used extensively to make PET bottles, Paints, Polyester Shirts, Pocket combs e.t.c
(2) Asphalt : Used extensively to make Motor Road, highways
(3) Plastics : we use plastics in our everyday life, this is also a product of Refining of crude oil e.g PVC, Telephone casing, Tapes e.t.c
(4) Lubricating Oil/Grease : This is another product from crude oil Fractional Distillation.
(5) Propane/ Cooking Gas: This is also a product from oil which is used in our everyday life for cooking, grilling etc.
Answer:
Elastic modulus of steel = 202.27 GPa
Explanation:
given data
long = 110 mm = 0.11 m
cross section 22 mm = 0.022 m
load = 89,000 N
elongation = 0.10 mm = 1 ×
m
solution
we know that Elastic modulus is express as
Elastic modulus =
................1
here stress is
Stress =
.................2
Area = (0.022)²
and
Strain =
.............3
so here put value in equation 1 we get
Elastic modulus =
Elastic modulus of steel = 202.27 ×
Pa
Elastic modulus of steel = 202.27 GPa
Answer:
Machinist
Explanation:
A skilled worker with the ability to operate computer numerically controlled (CNC) machines is qualified to work in a machinist position.
A machinist is a person who is properly skilled and consists of advanced knowledge regarding the functions of a CNC machine. He can use different mechanisms and complex numerical functions of the machine to carry out different tasks. Any person who lacks the official learning of mechanisms cannot operate such machines effectively.
Answer:
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes
Explanation:
In order to find the actual heat transfer rate is lower or higher than its value we will first find the rate of heat transfer to power plant:


From First law of thermodynamics:
Rate of heat transfer to river=heat transfer to power plant-work done
Rate of heat transfer to river=2000-800
Rate of heat transfer to river=1200MW
So the actual amount of heat rejected ti the river will be less as there will some heat loss to surrounding and in pipes.