Complete Question
The complete question iws shown on the first uploaded image
Answer:
a

b

Explanation:
Now looking at the diagram let take that the magnetic field is moving in the x-axis
Now the magnetic force is mathematically represented as
x B
Note (The x is showing cross product )
Note the force(y-axis) is perpendicular to the field direction (x-axis)
Now when the loop is swinging forward
The motion of the loop is from y to z to to x to y
Now since the force is perpendicular to the motion(velocity) of the loop
Hence the force would be from z to y and back to z
and from lenze law the induce current opposes the force so the direction will be from y to z to x
Now when the loop is swinging backward
The motion of the induced current will now be x to z to y
Mass is the amount of matter in an object whereas weight is the force of gravity acting on the mass of an object. Different planets exert a different force of gravity on an object-meaning that an object's weight will change depending on the force of gravity acting on it, but it's mad will remain unchanged.
Answer:
2400kgm²
Explanation:
Rotational inertia=mass x radius²
The answer is no. If you are dealing with a conservative force and the object begins and ends at the same potential then the work is zero, regardless of the distance travelled. This can be shown using the work-energy theorem which states that the work done by a force is equal to the change in kinetic energy of the object.
W=KEf−KEi
An example of this would be a mass moving on a frictionless curved track under the force of gravity.
The work done by the force of gravity in moving the objects in both case A and B is the same (=0, since the object begins and ends with zero velocity) but the object travels a much greater distance in case B, even though the force is constant in both cases.