1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elis [28]
3 years ago
12

A book has a mass of 5 lb what is the mass of the book kg

Physics
1 answer:
OverLord2011 [107]3 years ago
6 0
The mass of the Book is 2.27 kg.
You might be interested in
(a) Neil A. Armstrong was the first person to walk on the moon. The distance between the earth and the moon is 3.85 108 m. Find
Goshia [24]

Answer:

It took 1.28 seconds to his voice to reach the Earth via radio waves.

Explanation:

The electromagnetic spectrum is the distribution of radiation due to the different frequencies at which it radiates and its different intensities, that radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it.

The distribution of the radiation in the electromagnetic spectrum can also be given in wavelengths, but it is more frequent to work with it at frequencies, the highest being that of gamma rays, followed by X-rays, ultraviolet rays and the visible region , and those of lower frequencies, which correspond to infrared, microwave and radio waves.

Light propagates as electromagnetic wave in vacuum with a speed of 3x10^{8}m/s. Therefore, radio waves will have in vacuum the same speed.

Then, to know the time that it took for its voice, the next equation can be used:

c = \frac{d}{t}  (1)

Where c is the speed of light, d is the distance and t is the time.

Notice that t can be isolated from equation 1.

t = \frac{d}{c} (2)

t = \frac{3.85x10^{8} m}{3x10^{8}m/s}

t = 1.28s

Hence, it took 1.28 seconds to his voice to reach the Earth via radio waves.

7 0
3 years ago
Bob, Jill, Kim, and Steve measure an object's length, density, mass, and brightness, respectively. Which student must derive a u
netineya [11]
The answer is A. Bob (<span>object's length)

</span>
3 0
2 years ago
We can determine the velocity of a wave when given the frequency and the
Kobotan [32]

Hello.

The answer is: D. wavelength

This is correct because   frequency x wavelength = speed

Have a nice day

3 0
2 years ago
Read 2 more answers
3. A 2kg wooden block whose initial speed is 3 m/s slides on a smooth floor for 2 meters before it comes to a
serious [3.7K]

Answer:

Calculating Coefficient of friction is 0.229.

Force is 4.5 N that keep the block moving at a constant speed.

Explanation:

We know that speed expression is as \mathrm{V}^{2}=\mathrm{V}_{\mathrm{i}}^{2}+2 . \mathrm{a} . \Delta \mathrm{s}.

Where, {V}_{i} is initial speed, V is final speed, ∆s displacement and a acceleration.

Given that,

{V}_{i} =3 m/s, V = 0 m/s, and  ∆s = 2 m

Substitute the values in the above formula,

0=3^{2}-2 \times 2 \times a

0 = 9 - 4a

4a = 9

a=2.25 \mathrm{m} / \mathrm{s}^{2}

a=2.25 \mathrm{m} / \mathrm{s}^{2} is the acceleration.

Calculating Coefficient of friction:

\mathrm{F}=\mathrm{m} \times \mathrm{a}

\mathrm{F}=\mu \times \mathrm{m} \times \mathrm{g}

Compare the above equation

\mu \times m \times g=m \times a

Cancel "m" common term in both L.H.S and R.H.S

\text { Equation becomes, } \mu \times g=a

\text { Coefficient of friction } \mu=\frac{a}{g}

\mathrm{g} \text { on earth surface }=9.8 \mathrm{m} / \mathrm{s}^{2}

\mu=\frac{2.25}{9.8}

\mu=0.229

Hence coefficient of friction is 0.229.

calculating force:

\text { We know that } \mathrm{F}=\mathrm{m} \times \mathrm{a}

\mathrm{F}=2 \times 2.25 \quad(\mathrm{m}=2 \mathrm{kg} \text { given })

F = 4.5 N

Therefore, the force would be <u>4.5 N</u> to keep the block moving at a constant speed across the floor.

7 0
2 years ago
An 7.5 × binocular has 3.7-cm-focal-length eyepieces. What is the focal length of the objective lenses? Express your answer to t
elixir [45]

To solve this problem we will apply the concept of magnification, which is given as the relationship between the focal length of the eyepieces and the focal length of the objective. This relationship can be expressed mathematically as,

\mu = \frac{f_0}{f_e}

Here,

\mu = Magnification

f_e = Focal length eyepieces

f_0 = Focal length of the Objective

Rearranging to find the focal length of the objective

f_0 = \mu f_e

Replacing with our values

f_0 = 7.5* 3.7cm

f_0 = 27.75cm

Therefore the focal length of th eobjective lenses is 27.75cm

5 0
3 years ago
Other questions:
  • Which circuits correctly show Ohm's law?
    12·2 answers
  • A typical human consumes 2500 Kcal of energy during a day. This is the equivalent to 10,450,000 J! Say you decided to run stairs
    8·1 answer
  • Which of the following statements is false? A. Two or more atoms combine chemically to form a molecule. B. Two or more different
    8·1 answer
  • Leyden jars function similarly to modern _____________, which store electric charge in electronic circuitry.
    13·1 answer
  • A negative externality:
    6·1 answer
  • If a battery-operated car has a resistance of 3 Ohms and the current moving through it is 2 amps, what is the voltage of the bat
    14·2 answers
  • A people-moving conveyor-belt moves a 600-newton person a distance of 100 meters through the airport.
    10·1 answer
  • Type the correct answer in the box. Spell all words correctly.
    14·1 answer
  • Help please, will give brainlist!
    8·1 answer
  • Are you an antisocial person. Me honestly am
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!