The frequency of the human ear canal is 2.92 kHz.
Explanation:
As the ear canal is like a tube with open at one end, the wavelength of sound passing through this tube will propagate 4 times its length of the tube. So wavelength of the sound wave will be equal to four times the length of the tube. Then the frequency can be easily determined by finding the ratio of velocity of sound to wavelength. As the velocity of sound is given as 339 m/s, then the wavelength of the sound wave propagating through the ear canal is
Wavelength=4*Length of the ear canal
As length of the ear canal is given as 2.9 cm, it should be converted into meter as follows:

Then the frequency is determined as
f=c/λ=339/0.116=2922 Hz=2.92 kHz.
So, the frequency of the human ear canal is 2.92 kHz.
Answer:
Ben's average speed was twice Debby's average speed.
Explanation:
Ben covered a total distance of 16 miles (10+4+2) and Debby covered 8 miles (3+2+2+1) which is half of what Ben covered. As they both reached the place in the same amount of time it tells us Ben was faster.
Answer:
C. Burning coal tends to harm the environment more than using solar panels.
Explanation:
When coal is burned, it reacts with the oxygen in the air. This reaction converts the stored potential energy, which turns into thermal energy, which is released as heat. But it also produces methane and carbon dioxide which is released into the air.
The hot gases produce their own characteristic pattern of spectral lines, which remain fixed as the temperature increases moderately.
<h3><u>Explanation: </u></h3>
A continuous light spectrum emitted by excited atoms of a hot gas with dark spaces in between due to scattered light of specific wavelengths is termed as an atomic spectrum. A hot gas has excited electrons and produces an emission spectrum; the scattered light forming dark bands are called spectral lines.
Fraunhofer closely observed sunlight by expanding the spectrum and a huge number of dark spectral lines were seen. "Robert Bunsen and Gustav Kirchhoff" discovered that when certain chemicals were burnt using a Bunsen burner, atomic spectra with spectral lines were seen. Atomic spectral pattern is thus a unique characteristic of any gas and can be used to independently identify presence of elements.
The spectrum change does not depend greatly on increasing temperatures and hence no significant change is observed in the emitted spectrum with moderate increase in temperature.
Electric field = potential difference
-----------------------------
distance between plates
Distance between plates = 45
----------
500
= 0.09 meters.