<span>Phospholipids would have to form a phospholipid bilayer in order to achieve water on the outside and water inside. This is because the nonpolar tails of the phospholipids are facing each other in a water environment because they cannot interact with the water, only their own tails, while the phosphate heads of the molecule face the periphery of the tails and interact with water. Micelles are the simplest examples of these.</span>
Explanation:
Moles of metal,
=
4.86
⋅
g
24.305
⋅
g
⋅
m
o
l
−
1
=
0.200
m
o
l
.
Moles of
H
C
l
=
100
⋅
c
m
−
3
×
2.00
⋅
m
o
l
⋅
d
m
−
3
=
0.200
m
o
l
Clearly, the acid is in deficiency ; i.e. it is the limiting reagent, because the equation above specifies that that 2 equiv of HCl are required for each equiv of metal.
So if
0.200
m
o
l
acid react, then (by the stoichiometry), 1/2 this quantity, i.e.
0.100
m
o
l
of dihydrogen will evolve.
So,
0.100
m
o
l
dihydrogen are evolved; this has a mass of
0.100
⋅
m
o
l
×
2.00
⋅
g
⋅
m
o
l
−
1
=
?
?
g
.
If 1 mol dihydrogen gas occupies
24.5
d
m
3
at room temperature and pressure, what will be the VOLUME of gas evolved?
Weighs 0.001836 gram per cubic centimeter or 1.836 kilogram per cubic meter
Try to see if this helps
The letter only has reflection symmetry, if you rotated it it would look the same.
Answer: Option (b) is the correct answer.
Explanation:
A covalent compound is defined as the compound in which sharing of electrons take place between the combining atoms. Generally, when two or more non-metals chemically combine together the it will lead to the formation of a covalent compound.
For example,
and HCl is also a covalent compound.
And, a compound in which transfer of electrons occur between the combining atoms is known as an ionic compound. Whenever, a metal chemically combines with a non-metal then it will always lead to the formation of an ionic compound.
For example, KI is an ionic compound.
Thus, we can conclude that
and HCl are the two substances which are covalent compounds.