Answer:
3
three half-filled orbitals each capable of forming a single covalent Bond and an additional lone - pair of electrons
Answer:
<h3>The answer is option B</h3>
Explanation:
To calculate the number of atoms we must first calculate the number of moles
Molar mass = mass / number of moles
number of moles = mass / Molar mass
Molar mass (K) = 39.10mole
mass = 2.10g
number of moles = 2.10/ 39.10
= 0.0537mol
After that we use the formula
N = n × L
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10^23 entities
Number of K atoms is
N = 0.0537 × 6.02 × 10^13
<h3>N = 3.23×10^22 atoms of K</h3>
Hope this helps you.
Table salt is an ionic compound :)
Rate and Thanks!
Explanation:
As it is given that solubility of water in diethyl ether is 1.468 %. This means that in 100 ml saturated solution water present is 1.468 ml.
Hence, amount of diethyl ether present will be calculated as follows.
(100ml - 1.468 ml)
= 98.532 ml
So, it means that 98.532 ml of diethyl ether can dissolve 1.468 ml of water.
Hence, 23 ml of diethyl ether can dissolve the amount of water will be calculated as follows.
Amount of water = 
= 0.3427 ml
Now, when magnesium dissolves in water then the reaction will be as follows.

Molar mass of Mg = 24.305 g
Molar mass of
= 18 g
Therefore, amount of magnesium present in 0.3427 ml of water is calculated as follows.
Amount of Mg =
= 0.462 g
Missing question: Express the salt concentration in kg/m³.
Answer is: the salt concentration is 9.8 kg/m³.
m(NaCl) = 9.8 g ÷ 1000 g/kg.
m(NaCl) = 0.0098 kg.
V(solution) = 1 L = 1 dm³.
V(solution) = 1 dm³ ÷ 1000 dm³/m³.
V(solution) = 0.001 m³.
d(solution) = m(NaCl) ÷ V(solution).
d(solution) = 0.0098 kg ÷ 0.001 m³.
d(solution) = 9.8 kg/m³.