Answer:


The motion of the block is downwards with acceleration 1.7 m/s^2.
Explanation:
First, we will calculate the acceleration using the kinematics equations. We will denote the direction along the incline as x-direction.

Newton’s Second Law can be used to find the net force applied on the block in the -x-direction.

Now, let’s investigate the free-body diagram of the block.
Along the x-direction, there are two forces: The x-component of the block’s weight and the kinetic friction force. Therefore,

As for the static friction, we will consider the angle 31.8, but just before the block starts the move.

1738 Fetty wap bhsyfnd hdnchd hand hdnzudnusjd jdnshdkdndb hdkcnd
Evolution of cyanobacteria that produce O2volcanic outgassing to create a thicker atmosphereformation of an ozone layer to block harmful radiationall of the above<span>only a and c
Are the options</span>
Answer:
Magnitude of fourth displacement is approximately 95 metres,
Direction of fourth displacement is straight west.
Answer:
T = 120.3 N
Explanation:
Since, the tension in the rope is acting against both the centripetal force and the weight of the stone. As both act downward towards center of the circle and tension acts towards point of support that is upward. So, tension will be equal to the sum of centripetal force and weight of the stone:
Tension = Centripetal Force + Weight of Stone
T = mv²/r + mg
where,
m = mass of stone = 5.31 kg
r = radius of circle = length of string = 2.99 m
g = 9.8 m/s²
Therefore,
T = (5.31 kg)(6.2 m/s)²/(2.99 m) + (5.31 kg)(9.8 m/s²)
T = 68.27 N + 52.03 N
<u>T = 120.3 N</u>