Answer:
10 N
103.1 N
Explanation:
Solution:
Let the position coordinate y be positive downward.
<u><em>Constraint of cord AD: </em></u>
Ya+Yb=constant
Va+Vd=0
Aa+Ad=0
<em><u>Constraint of cord BC: </u></em>
(Yb-Yd)+(Yc-Yd)=constant
Vb+Vc-2Vd=0
Ab+Ac-2Ad=0
<u><em>Eliminate Ad:</em></u>
2Aa+Ab+Ac=0.....................................(1)
We have uniformly accelerated motion because all of the forces are constant.
Yb=Yb(o)+Vb(o)*t+1/2Ab*t^2 , Vb(o)=0
Ab=2[Yb-Yb(o)]/t^2=(2)(3)/(2)^2=1.5 m/s^2
<u><em>Pulley D: </em></u>
∑Fy=0: 2Tbc-Tad=0
Tad=2Tbc
<u><em>Block A:</em></u>
∑Fy=mAy: Wa-Tad=m_(a)Aa
Aa=Wa-Tad/m_(a)
=Wa-2Tbc/m_(a)............................(2)
<u><em>Block C: </em></u>
∑Fy=mAy: Wc-Tbc=m_(c)Ac
Ac=Wc-Tbc/m_(c)............................(3)
<u><em>Substituting the value for Ab and Eqs. (2) and (3) into Eq. (1), and solving for Tbc</em></u>
2(Wa-2Tbc/m_(a))+Ab+(Wc-Tbc=m_(c)Ac)=0
2(m_(a)g-2Tbc/m_(a))Ab+(m_(c)g-Tbc=m_(c)Ac)=0
(4/m_(a)+1/m_(c))*Tbc=3g+Ab
(4/10+1/5)*Tbc=3(9.8)+1.5
Tbc=51.55 N
<u><em>Block B: </em></u>
∑Fy=mAy: P+Wb-Tbc=m_(b)Ab
<u><em>(a) Magnitude of P. </em></u>
P=Tbc-Wb+m_(b)Ab
=51.55-5(9.81)+5(1.5)
=10 N
<u><em>(b) Tension in cord AD.</em></u>
Tad=2Tbc=(2)(51.55)=103.1 N
Note: find the attachment