TLDR: R=30 Ohms, I=2 Amps, 12V, 28V, 20V, respectively.
Alright, let’s break this down. There are three resistors in this circuit, meaning that we have to find the equivalent resistance. Luckily, they are all in parallel with one another; this means we can add the resistances together without having to do inverses like in a series problem. This means that the equivalent resistance, Req, would equal:
Req=R1 + R2 + R3
Req=6 + 14+ 10
Req=30 Ohms
This means that we could theoretically replace all three resistors with a 30 Ohm resistor and accomplish the same goal. Now, the entire voltage of the system would normally be reduced to zero after passing through the resistors - in this case, the 60 Vs would be lost after passing through 30 Ohms. This means we’re losing 2V/Ohm; now we can figure out how much we’re losing at each resistor.
By losing 2V per Ohm, we’re losing 12 V at the first resistor, 28 V at the second resistor, and 20 V at the third resistor.
Finally, we can calculate the current through the circuit; for a series circuit, the current remains the same. Using V=IR, we can find that:
V=IR
60 V = I(30 Ohms)
I = 2 Amps
The current passing through the circuit is 2 Amps.
Hope this helps!
Answer:
in which standard you are, i am typing your answer till please reply.
Answer:
Injury to a vein increases the risk of forming a blood clot.
Explanation:
hoped this helped
Answer:
Long sight occurs when the eyeball is too short or the lens is too thin, or both. As a result, light rays from near objects are focused behind the retina because the light rays are not converged enough. The image formed on the retina is therefore out of focus.
To correct this problem, people can wear glasses with convex lenses. Light rays from near objects are converged by the convex lenses before entering the eyes, so that light can be focused on the retina to form a sharp image. Additionally, long sight can also be corrected by surgical methods such as LASIK.