C. when the circuit is closed
Answer:
a) t = 0.0185 s = 18.5 ms
b) T = 874.8 N
Explanation:
a)
First we find the seed of wave:
v = fλ
where,
v = speed of wave
f = frequency = 810 Hz
λ = wavelength = 0.4 m
Therefore,
v = (810 Hz)(0.4 m)
v = 324 m/s
Now,
v = L/t
where,
L = length of wire = 6 m
t = time taken by wave to travel length of wire
Therefore,
324 m/s = 6 m/t
t = (6 m)/(324 m/s)
<u>t = 0.0185 s = 18.5 ms</u>
<u></u>
b)
From the formula of fundamental frquency, we know that:
Fundamental Frequency = v/2L = (1/2L)(√T/μ)
v = √(T/μ)
where,
T = tension in string
μ = linear mass density of wire = m/L = 0.05 kg/6 m = 8.33 x 10⁻³ k gm⁻¹
Therefore,
324 m/s = √(T/8.33 x 10⁻³ k gm⁻¹)
(324 m/s)² = T/8.33 x 10⁻³ k gm⁻¹
<u>T = 874.8 N</u>
<u><em>Answer:Just as wavelength and frequency are related to light, they are also related to energy. The shorter the wavelengths and higher the frequency corresponds with greater energy. So the longer the wavelengths and lower the frequency results in lower energy.</em></u>
<u><em /></u>
Explanation:So, if the wavelength of a light wave is shorter, that means that the frequency will be higher because one cycle can pass in a shorter amount of time. ... That means that longer wavelengths have a lower frequency. Conclusion: a longer wavelength means a lower frequency, and a shorter wavelength means a higher frequency!
<em>Extra explanation: All waves can be defined in terms of their frequency and intensity. c = λν expresses the relationship between wavelength and frequency.</em>
Answer:

Explanation:
according to snell's law

refractive index of water n_w is 1.33
refractive index of glass n_g is 1.5


now applying snell's law between air and glass, so we have


![\beta = sin^{-1} [\frac{n_g}{n_a}*sin\alpha]](https://tex.z-dn.net/?f=%5Cbeta%20%3D%20sin%5E%7B-1%7D%20%5B%5Cfrac%7Bn_g%7D%7Bn_a%7D%2Asin%5Calpha%5D)
we know that 

Sivilculture isis the art and science of managing forests for desired outcomes.