Explanation:
Terminal velocity is given by:

Here, m is the mass of the falling object, g is the gravitational acceleration,
is the drag coefficient,
is the fluid density through which the object is falling, and A is the projected area of the object. in this case the projected area is given by:

Recall that drag coefficient for a horizontal skydiver is equal to 1 and air density is
.

Without drag contribution the motion of the person is an uniformly accelerated motion, thus:

This question involves the concepts of equilibrium and Newton's third law of motion.
The support force will be "1 pound" for the empty bucket and the support force will be "6 pounds" after pouring water into it.
- According to the condition of equilibrium, the sum of forces acting on a stationary object must be zero. Hence, the support force of the table will be equal to the total mass of the bucket.
- According to Newton's Third Law of Motion every action force has an equal but opposite reaction force. Hence, the support force will be a reaction force to the weight of the bucket.
Therefore, the support force in each case will be equal to the total mass of the bucket:
Case 1 (empty bucket):
<u>support force = 1 pound</u>
<u></u>
Case 1 (water poured):
support force = 1 pound + 5 pound
<u>support force = 6 pound</u>
<u></u>
Learn more about equilibrium here:
brainly.com/question/9076091
Answer: A; True
Explanation: Momentum is known to be a vector quality, and thus has been proven by modern scientists and resulting in this answer being true.
Hope this helps <3
Stay safe, stay warm
-Carrie
Ps. it would mean a lot if you marked brainliest (=
Force is mass times acceleration. This means an object with a larger mass needs a stronger force to be moved along at the same acceleration as an object with a small mass
R = ρ L/A. R= resistance, ρ= resistivity, L= length of the conductor. A = area of the conductor. Resistance is directly proportional to the length of the conductor. So if length of the conductor is decreased, resistance will also decrease. Hence A is the correct option