1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
borishaifa [10]
3 years ago
9

If there are 16 signal combinations (states) and a baud rate (number of signals/second) of 8000/second, how many bps could I sen

d
Engineering
1 answer:
Mice21 [21]3 years ago
6 0

Answer:

32000 bits/seconds

Explanation:

Given that :

there are 16  signal combinations (states) = 2⁴

bits  n = 4

and a baud rate (number of signals/second) = 8000/second

Therefore; the number of bits per seconds can be calculated as follows:

Number of bits per seconds = bits  n × number of signal per seconds

Number of bits per seconds =  4 × 8000/second

Number of bits per seconds = 32000 bits/seconds

You might be interested in
The rolling process is governed by the frictional force between the rollers and the workpiece. The frictional force at the entra
adell [148]

Answer:

b)false

Explanation:

Rolling is a process in which work piece passes through rolls to produce desired out put of the work piece.Rolling  is a metal forming process.

We know that friction force is responsible for motion of work piece between rolls.If friction force is so small at the entrance side then work piece will not enter in the forming zone and forming process will not occurs.So the friction force should be high at the entrance side and low at the exit side.

So given statement is wrong.

3 0
3 years ago
A 11-cm-diameter horizontal jet of water with a velocity of 40 m/s relative to the ground strikes a flat plate that is moving in
Reika [66]

Answer:

F = 8552.7N

Explanation:

We need first our values, that are,

V_{jet} = 40m/s\\V_{Plate} = 10m/s \\D = 11cm

We start to calculate the relative velocity, that is,

V_r = V_{jet}-V_{plate}\\V_r = (40)-(10)\\V_r = 30m/s

With the relative velocity we can calculate the mass flow rate, given by,

\dot{m}_r = \rho A V_r

\dot{m}_r = (1000)(30) \frac{\pi (0.11)^2}{4}

\dot{m}_r = 285.09kg/s

We need to define the Force in the direction of the flow,

\sum\vec{F} = \sum_{out} \beta\dot{m}\vec{V} - \sum_{in} \beta\dot{m} \vec{V}\\

F = \dot{m}V_r

F = (285.09Kg/s)(30)

F = 8552.7N

8 0
3 years ago
A steel bar is 150 mm square and has a hot-rolled finish. It will be used in a fully reversed bending application. Sut for the s
Xelga [282]

Answer:

See explanation

Explanation:

Given The bar is square and has a hot-rolled finish. The loading is fully reversed bending.

Tensile Strength

Sut: 600 MPa

Maximum temperature

Tmax: 500 °C

Bar side dimension

b: 150 mm

Alternating stress

σa: 100 MPa

Reliability

R: 0.999 Note 1.

Assumptions Infinite life is required and is obtainable since this ductile steel will have an endurance limit. A reliability factor of 99.9% will be used.

Solution See Excel file Ex06-01.xls.

1 Since no endurance-limit or fatigue strength information is given, we will estimate S'e based on the ultimate tensile strength using equation 6.5a.

S'e: 300 MPa = 0.5 * Sut

2 The loading is bending so the load factor from equation 6.7a is

Cload: 1

3 The part size is greater than the test specimen and the part is not round, so an equivalent diameter based on its 95% stressed area must be determined and used to find the size factor. For a rectangular section in nonrotating bending, the A95 area is defined in Figure 6-25c and the equivalent diameter is found from equation 6.7d

A95: 1125 mm2 = 0.05 * b * b Note 2.

dequiv: 121.2 mm = SQRT(A95val / 0.0766)

and the size factor is found for this equivalent diameter from equation 6.7b, to be

Csize: 0.747 = 1.189 * dequiv^-0.097

4 The surface factor is found from equation 6.7e and the data in Table 6-3 for the specified hot-rolled finish.

Table 6-3 constants

A: 57.7

b: -0.718 Note 3.

Csurf: 0.584 = Acoeff * Sut^bCoeff

5 The temperature factor is found from equation 6.7f :

Ctemp: 0.710 = 1 - 0.0058 * (Tmax - 450)

6 The reliability factor is taken from Table 6-4 for R = 0.999 and is

Creliab: 0.753

7 The corrected endurance limit Se can now be calculated from equation 6.6:

Se: 69.94 MPa = Cload * Csize * Csurf * Ctemp *

Creliab * Sprme

Let

Se: 70 MPa

8 To create the S-N diagram, we also need a value for the estimated strength Sm at 103 cycles based on equation 6.9 for bending loading.

Sm: 540 MPa = 0.9 * Sut

9 The estimated S-N diagram is shown in Figure 6-34 with the above values of Sm and Se. The expressions of the two lines are found from equations 6.10a through 6.10c assuming that Se begins at 106 cycles.

b: -0.2958 Note 4.

a: 4165.7

Plotting Sn as a function of N from equation 6.10a

N Sn (MPa)

1000 540 =aa*B73^bb

2000 440

4000 358

8000 292

16000 238

32000 194

64000 158

128000 129

256000 105

512000 85

1000000 70

FIGURE 6-34. S-N Diagram and Alternating Stress Line Showing Failure Point

10 The number of cycles of life for any alternating stress level can now be found from equation 6.10a by replacing σa for Sn.

At N = 103 cycles,

Sn3: 540 MPa = aa * 1000^bb

At N = 106 cycles,

Sn6: 70 MPa = aa * 1000000^bb

The figure above shows the intersection of the alternating stress line (σa = 100 MPa) with the failure line at N = 3.0 x 105 cycles.

8 0
3 years ago
A steel bar 110 mm long and having a square cross section 22 mm on an edge is pulled in tension with a load of 89,000 N, and exp
iragen [17]

Answer:

Elastic modulus of steel  = 202.27 GPa

Explanation:

given data

long = 110 mm = 0.11 m

cross section 22 mm  = 0.022 m

load = 89,000 N

elongation = 0.10 mm = 1 × 10^{-4} m

solution

we know that Elastic modulus is express as

Elastic modulus = \frac{stress}{strain}    ................1

here stress is

Stress = \frac{Force}{area}       .................2

Area = (0.022)²

and  

Strain = \frac{extension}{length}       .............3

so here put value in equation 1 we get

Elastic modulus = \frac{89,000\times 0.11}{0.022^2 \times 1 \times 10^{-4} }  

Elastic modulus of steel = 202.27 × 10^9 Pa

Elastic modulus of steel  = 202.27 GPa

3 0
3 years ago
A water-filled manometer is used to measure the pressure in an air-filled tank. One leg of the manometer is open to atmosphere.
ddd [48]

Answer:

P = 150.335\,kPa (Option B)

Explanation:

The absolute pressure of the air-filled tank is:

P = 101.3\,kPa + \left(1000\,\frac{kg}{m^{3}} \right)\cdot \left(9.807\,\frac{kg}{m^{3}} \right)\cdot (5\,m)\cdot \left(\frac{1\,kPa}{1000\,Pa} \right)

P = 150.335\,kPa

4 0
3 years ago
Other questions:
  • The collar A, having a mass of 0.75 kg is attached to a spring having a stiffness of k = 200 N/m . When rod BC rotates about the
    15·1 answer
  • Complete the following sentence. The skills and content of several subject areas were combined to form a new field known as a me
    12·2 answers
  • What is the major drawback to use whiskers as a dispersed agents in composites? a)- High price b)- Large length to diameter rati
    7·1 answer
  • Table 1(a) shows the marks obtained by 40 students in an examination
    11·1 answer
  • Who is using welding symbols to to communicate the detailed information necessary for welders to complete the weld?
    6·1 answer
  • How do engineering and technology impact the natural world and environment
    6·1 answer
  • A cylindrical 1040 steel rod having a minimum tensile strength of 865 MPa (125,000 psi), a ductility of at least 10%EL, and a fi
    7·1 answer
  • I want to solve the question
    11·1 answer
  • 3. What is special about beryllium-copper alloy tools?
    6·2 answers
  • Where would the impossible amount of product 1 and 2 points intersect on the production possibility curve
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!