The test for this is fairly simple.
We take a glowing match or splint near the gas sample, if the glow intensifies, oxygen is present.
If a lit splint or match goes out with a popping sound, this means that hydrogen is present.
There are 1.92 × 10^23 atoms Mo in the cylinder.
<em>Step 1</em>. Calculate the <em>mass of the cylinder
</em>
Mass = 22.0 mL × (8.20 g/1 mL) = 180.4 g
<em>Step 2</em>. Calculate the<em> mass of Mo
</em>
Mass of Mo = 180.4 g alloy × (17.0 g Mo/100 g alloy) = 30.67 g Mo
<em>Step 3</em>. Convert <em>grams of Mo</em> to <em>moles of Mo
</em>
Moles of Mo = 30.67 g Mo × (1 mol Mo/95.95 g Mo) = 0.3196 mol Mo
<em>Step 4</em>. Convert <em>moles of M</em>o to <em>atoms of Mo
</em>
Atoms of Mo = 0.3196 mol Mo × (6.022 × 10^2<em>3</em> atoms Mo)/(1 mol Mo)
= 1.92 × 10^23 atoms Mo
I think it’s 2.45, not 100% sure
So what do you want me to do
Explanation
Atoms
Explanation:
Chemical bonds results from the rearrangement of atoms in a chemical species.
It deals with the various attractive forces joining chemical species togethe.
- When atoms are re-arranged, they form chemical bonds that leads to production of new compounds.
- This is made possible by the exchange or sharing of electrons.
- The driving force for most interatomic bonding is the tendency to have completely filled outer energy levels like the noble gases.
- When atoms are re-arranged in compounds they lead to the production of chemical bonds.
learn more:
Ionic bonds brainly.com/question/6071838
#learnwithBrainly