<u>Answer:</u> The energy released in the given nuclear reaction is 1.3106 MeV.
<u>Explanation:</u>
For the given nuclear reaction:

We are given:
Mass of
= 39.963998 u
Mass of
= 39.962591 u
To calculate the mass defect, we use the equation:

Putting values in above equation, we get:

To calculate the energy released, we use the equation:

(Conversion factor:
)

Hence, the energy released in the given nuclear reaction is 1.3106 MeV.
I believe is different in pressure
Molality
is one way of expressing concentration of a solute in a solution. It is expressed
as the mole of solute per kilogram of the solvent. To calculate for the
molality of the given solution, we need to convert the mass of solute into
moles and divide it to the mass of the solvent.
<span>
Moles of HCl = 5.5 g HCl ( 1 mol HCl / 36.46 g HCl ) = 0.1509 mol HCl</span>
<span>
Molality = 0.1509 mol HCl / 200 g C2H6O ( 1 kg / 1000 g )
Molality
= 0.7543 mol / kg</span>
<span>The concentration in molality of hcl in a solution that is prepared by dissolving 5.5 g of hcl in 200.0 g of c2h6o is
0.7453 molal.</span>
Answer:
Isotopes of an element are atoms of the same element that have different number of neutrons.
I need points thanks I need points thanks I need points thanks Wkbejwiwbwe e enjwkwkebe b a owl qiwi192928 Ake eleve