NaHCO3 is a product of a strong base and a weak acid reaction. Thus it has weak basic properties.
HCO3- ion is actually amphoteric, which means it can act as a base or an acid. But it is weaker than a strong acid or a strong base.
<span>HCO3- is amphoteric meaning it acts both as a B.L. Acid and a B.L. Base.. which is why it's used to neutralize both acid and base spills in the lab.</span>
Explanation:
Defining law of definite proportions, it states that when two elements form more than one compound, the ratios of the masses of the second element which combine with a fixed mass of the first element will always be ratios of small whole numbers.
A. One of the oxides (Oxide 1) contains 63.2% of Mn.
Mass of the oxide = 100g
Mass of Mn = 63.2 g
Mass of O = 100 - 63.2
= 36.8 g
Ratio of Mn to O = 63.2/36.8
= 1.72
Another oxide (Oxide 2) contains 77.5% Mn.
Mass of oxide = 100 g
Mass of Mn = 77.5 g
Mass of O = 100 - 77.5
= 22.5 g
Ratio of Mn to O = 77.5/22.5
= 3.44
Therefore, the ratio of the masses of Mn and O in Oxide 1 and Oxide 2 is in the ratio 1.72 : 3.44, which is also 1 : 2. So the law of multiple proportions is obeyed.
B.
Oxide 1
Mass of Mn per 1 g of O = mass of Mn/mass of O
= 77.5/22.5
= 3.44 g/g of Oxygen.
Oxide 2
Mass of Mn per 1 g of O = mass of Mn/mass of O
= 77.5/22.5
= 3.44 g/g of Oxygen.
Explanation:
Use the density formula to determine the volume of the piece of metal.
density
=
mass
volume
Rearrange the equation to isolate volume.
volume
=
mass
density
volume
=
147
g
7.00
g
mL
=
21.0 mL
The final volume in the cylinder after adding the piece of metal is
20.0 mL
+
21.0 mL
=
41.0 mL
Answer:
I think it would be the last answer
Explanation:
C6H15O6
Good luck and don't forget to rate or mark Brainliest :)