The moles of the gas in the sample is 0.391 moles
calculation
by use of ideal gas equation, that is Pv=nRT
where n is number of moles
P(pressure)= 660 mmhg
R(gas constant) = 62.364 l.mmhg/mol.K
T(temperature)= 25 +273 = 298 k
by making n the subject of the formula
n= Pv/ RT
n is therefore= (660mm hg x11 L)/( 62.364 L.mmhg/mol.k x298 K) = 0.391 moles
Assuming that the combustion formula is
CH4 + 2O2 --> 2H2O + CO2<span>,
That means for every 1 molecule of methane(CH4) there will be one molecule of carbon dioxide(</span>CO2) produced. Methane molecular weight 16, carbon dioxide molecular weight is 44. Then the percent yield should be:
1 * (0.374/ 16) /(0.983/44)= 0.374*44/ 0.983 * 16= 104.6%
You sure the number is correct? Percent yield should not exceed 100%
Answer:
6.48L
Explanation:
Given parameters:
V₁ = 2.5L
P₁ = 105 kPa
P₂ = 40.5 kPa
Condition: constant temperature
Unknown:
V₂ = ?
Solution:
To solve this problem, we are considering pressure and volume relationship. This should be solved by applying the knowledge of Boyle's law.
The law states that "The volume of fixed mass of a gas varies inversely as the pressure changes if the temperature is constant".
Mathematically;
P₁V₁ = P₂V₂
where P and V are pressure and volume, 1 and 2 represents initial and final states.
Substitute to find the V₂;
105 x 2.5 = 40.5 x V₂
Solving for V₂ gives 6.48L
There are 1,000m is 1k. So just move the decimal one position right. 127.56m
There are 10,000cm in 1k. Move the decimal two positions right. 1275.6cm
<span>7.379 * 10^(-4) is measured, hence prone to error, either human error or via measuring device. In this case,
100 cm = 1 m is written in stone and is unquestionable.
The density of the gold is 19.3 g/cm^3 and could be an approximation.
The approximation is good to at least one night.</span>