That depends on what type of pressure you are attempting to measure, to measure Atmospheric pressure, you would use a Barometer. To measure things like tires, you could use a Tire Pressure Gauge. For Industrial processes and boilers, you would use a Manometer. For pressure vessels, you would use a Bordon Gauge. <span />
Answer:
The Forces of Flight
At any given time, there are four forces acting upon an aircraft.
These forces are lift, weight (or gravity), drag and thrust. Lift is
the key aerodynamic force that keeps objects in the air. It is the
force that opposes weight; thus, lift helps to keep an aircraft in
the air. Weight is the force that works vertically by pulling all
objects, including aircraft, toward the center of the Earth. In order
to fly an aircraft, something (lift) needs to press it in the opposite
direction of gravity. The weight of an object controls how strong
the pressure (lift) will need to be. Lift is that pressure. Drag is a
mechanical force generated by the interaction and contract of a
solid body, such as an airplane, with a fluid (liquid or gas). Finally,
the thrust is the force that is generated by the engines of an
aircraft in order for the aircraft to move forward.
Explanation:
No waves because Q19 waves would going at the surface at regions
It would be 12W because: 6v is half of 12v so half of 24w would be 12w
A boy shooting a rubber band across the classroom -->
Elastic potential energy transformed into kinetic energy
<span>The initial energy is the energy stored in the muscles of the boy's arm, which is elastic potential energy. This is converted into motion of the rubber, therefore kinetic energy
A child going down a slide on a playground --> </span>Gravitational potential energy transformed into kinetic energy
On top of the slide, all the energy of the child is gravitational potential energy due to its height with respect to the ground (E=mgh). when it moves down the slide, this is converted into kinetic energy, because the child acquires a speed v (E=1/2 mv^2)
<span>
Rubbing your hands together to warm them on a cold day --> </span>Kinetic energy being transformed into thermal energy <span>
When rubbing hands, we are moving them (kinetic energy), and this energy raises the temperature of the hand's surface (thermal energy)
Turning on a battery operated light --> </span>
Chemical potential energy transformed into radiant energy <span>
A battery works by mean of chemical reactions (chemical potential energy), producing light (so, emitting energy by radiation, i.e. radiant energy)
Using a dc electric motor --> </span> Electrical energy transformed into kinetic energy<span>
A dc electric motor works using currents (so, electrical energy), and the energy produced can be used for example to accelerate a car (kinetic energy)
Using a gas power heater to warm a room --> </span>Chemical potential energy transformed into thermal energy
<span>A gas power heater burns gases (so, chemical reaction, i.e. chemical potential energy) to raise the temperature of the room (thermal energy)
Using a hand crank generator to produce electric current --> Kinetic energy transformed into electrical energy
In a hand-crank generator, the handle is being rotated (kinetic energy) in order to produce an electric current (electrical energy)
Using the light in your room that is plugged into the wall --> </span>Electrical energy transformed into radiant energy
<span>The lamp works by using electrical current flowing into a resistor (electrical energy) and it produces light, so it emits energy by electromagnetic radiation (radiant energy)
</span> <span>
</span>