Answer:
See explaination
Explanation:
int RED=10; int BLUE=11; int GREEN=12; int BUTTON1=8; int BUTTON2=9; void setup() { pinMode(RED, OUTPUT); pinMode(BLUE, OUTPUT); pinMode(GREEN, OUTPUT); pinMode(BUTTON1, INPUT); pinMode(BUTTON2, OUTPUT); } void loop() { int BTN1_STATE=digitalRead(BUTTON1); int BTN2_STATE=digitalRead(BUTTON2); if(BTN1_STATE==HIGH) { digitalWrite(BLUE, HIGH); delay(1000); // Wait for 1 second digitalWrite(BLUE, LOW); } if(BTN2_STATE==HIGH) { digitalWrite(RED, HIGH); delay(4000); // Wait for 4 seconds digitalWrite(RED, LOW); } if(BTN1_STATE==HIGH && BTN2_STATE==HIGH) { digitalWrite(GREEN, HIGH); delay(2000); // Wait for 2 second digitalWrite(GREEN, LOW); } }
Answer:
By running multiple regression with dummy variables
Explanation:
A dummy variable is a variable that takes on the value 1 or 0. Dummy variables are also called binary
variables. Multiple regression expresses a dependent, or response, variable as a linear
function of two or more independent variables. The slope is the change in the response variable. Therefore, we have to run a multiple regression analysis when the variables are measured in the same measurement.The number of dummy variables you will need to capture a categorical variable
will be one less than the number of categories. When there is no obvious order to the categories or when there are three or more categories and differences between them are not all assumed to be equal, such variables need to be coded as dummy variables for inclusion into a regression model.
Answer:
Below see details
Explanation:
A) It is attached. Please see the picture
B) First to calculate the overall mean,
μ=65∗25/75+80∗25/75+95∗25/75
μ=65∗25/75+80∗25/75+95∗25/75 = 80
Next to calculate E(MSTR) = σ2+(1/r−1) ∑ni(μi−μ)^2 = 5634
And E(MSE) = σ^2= 9
C) Yes, it is substantially large than E(MSE) in this case.
D) If we sampled 25 employees from each group, we are likely to get a F statistics to indicate differences of job satisfactions among three types of length of service of employees.
Answer:
no of unit is 17941
Explanation:
given data
fixed cost = $338,000
variable cost = $143 per unit
fixed cost = $1,244,000
variable cost = $92.50 per unit
solution
we consider here no of unit is = n
so here total cost of labor will be sum of fix and variable cost i.e
total cost of labor = $33800 + $143 n ..........1
and
total cost of capital intensive = $1,244,000 + $92.5 n ..........2
so here in both we prefer cost of capital if cost of capital intensive less than cost of labor
$1,244,000 + $92.5 n < $33800 + $143 n
solve we get
n > 
n > 17941
and
cost of producing less than selling cost so here
$1,244,000 + $92.5 n < 197 n
solve it we get
n >
n > 11904
so in both we get greatest no is 17941
so no of unit is 17941
The coil polarity in a waste-spark system is determined by the direction in which the coil is wound (left-hand rule for conventional current flow)and can’t be changed. For example, if a V-8 engine has a firing order of 18436572 and the number 1 cylinder is on compression, which cylinder will be on the exhaust stroke?