The reaction between the reactants would be:
CH₃NH₂ + HCl ↔ CH₃NH₃⁺ + Cl⁻
Let the conjugate acid undergo hydrolysis. Then, apply the ICE approach.
CH₃NH₃⁺ + H₂O → H₃O⁺ + CH₃NH₂
I 0.11 0 0
C -x +x +x
E 0.11 - x x x
Ka = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
Since the given information is Kb, let's find Ka in terms of Kb.
Ka = Kw/Kb, where Kw = 10⁻¹⁴
So,
Ka = 10⁻¹⁴/5×10⁻⁴ = 2×10⁻¹¹ = [H₃O⁺][CH₃NH₂]/[CH₃NH₃⁺]
2×10⁻¹¹ = [x][x]/[0.11-x]
Solving for x,
x = 1.483×10⁻⁶ = [H₃O⁺]
Since pH = -log[H₃O⁺],
pH = -log(1.483×10⁻⁶)
<em>pH = 5.83</em>
The attraction of like water molecules to each other is called cohension
Answer: The enthalpy of combustion, per mole, of butane is -2657.4 kJ
Explanation:
The balanced chemical reaction is,
The expression for enthalpy change is,
Putting the values we get :
2 moles of butane releases heat = 5314.8 kJ
1 mole of butane release heat = 
Thus enthalpy of combustion per mole of butane is -2657.4 kJ
HCl is a polar molecule with the hydrogen part being partial positive while the chlorine end being partial negative. This is because hydrogen has an electronegativity of 2.1, and chlorine has an electronegativity of 3.0. This means that chlorine attracted most of the electron cloud of molecule hence is the negative dipole, The dipole moment of HCl is 1.08 D (debyes). A Debye is equal to 3.34 x 10-30 coulomb-meters (C-m). The charge of each molecule is o.176+ for H and 0.176- for the Cl
Answer:
The correct answer is D) Nerve tissue is found in the retina, the rods and cones at the back of the eye.
Explanation:
The rods and cones are photoreceptors (that is nerve cells within the eyes that can sense light) which is situated in the retina.
These photoreceptors also sense colours and send these signals into the optic nerve for transmission to the brain.
Cheers