Answer:
0.09 N
Explanation:
We are given that
Radius of disk,r=6 cm=![\frac{6}{100}=0.06 m](https://tex.z-dn.net/?f=%5Cfrac%7B6%7D%7B100%7D%3D0.06%20m)
1 m=100 cm
B=1 T
Current,I=3 A
We have to find the frictional force at the rim between the stationary electrical contact and the rotating rim.
![dF=IBdr](https://tex.z-dn.net/?f=dF%3DIBdr)
![dF=IBdr](https://tex.z-dn.net/?f=dF%3DIBdr)
![\tau=rdF=IBrdr](https://tex.z-dn.net/?f=%5Ctau%3DrdF%3DIBrdr)
![\tau=\int_{0}^{R}IBr dr](https://tex.z-dn.net/?f=%5Ctau%3D%5Cint_%7B0%7D%5E%7BR%7DIBr%20dr)
![\tau=IB(\frac{R^2}{2}](https://tex.z-dn.net/?f=%5Ctau%3DIB%28%5Cfrac%7BR%5E2%7D%7B2%7D)
Torque due to friction
![\tau=R\times F](https://tex.z-dn.net/?f=%5Ctau%3DR%5Ctimes%20F)
Where friction force=F
![R\times F=\frac{IBR^2}{2}](https://tex.z-dn.net/?f=R%5Ctimes%20F%3D%5Cfrac%7BIBR%5E2%7D%7B2%7D)
![F=\frac{IBR}{2}](https://tex.z-dn.net/?f=F%3D%5Cfrac%7BIBR%7D%7B2%7D)
Substitute the values
![F=\frac{3\times 1\times 0.06}{2}](https://tex.z-dn.net/?f=F%3D%5Cfrac%7B3%5Ctimes%201%5Ctimes%200.06%7D%7B2%7D)
![F=0.09 N](https://tex.z-dn.net/?f=F%3D0.09%20N)