In lower temperatures, the molecules of real gases tend to slow down enough that the attractive forces between the individual molecules are no longer negligible. In high pressures, the molecules are forced closer together- as opposed to the further distances between molecules at lower pressures. This closer the distance between the gas molecules, the more likely that attractive forces will develop between the molecules. As such, the ideal gas behavior occurs best in high temperatures and low pressures. (Answer to your question: C) This is because the attraction between molecules are assumed to be negligible in ideal gases, no interactions and transfer of energy between the molecules occur, and as temperature decreases and pressure increases, the more the gas will act like an real gas.
Number of moles in the K2SO4 sample
= (16/1000)*1.04= 0.01664 mol
Number of moles in the Ba(NO3)2 sample
= (14.3/1000*0.880)= 0.01258 mol
Since the reaction is a 1:1 ratio between the two reactants, the limiting reagent is the one containing a smaller number of moles, namely Ba(NO3)2.
The molecular mass of BaSO4 is 137.3+(32.06+4*16.00)=233.4
Therefore the theoretical yield of Barium Sulphate is
233.4*0.01258=2.937 g
Actual yield = 2.60 g (given)
Therefore the percentage yield = 2.60/2.937=88.54%
Answer:
1. the limiting reagent is Barium Nitrate (Ba(NO3)2)
2. the theoretical yield is 2.94 g
3. the percentage yield is 88.5%
I apologize for the mistake previous to this update.
I'm in the car now so can't lookup periodic table. But you find molecular weight of: 1 Ca + 2 Cl
Then that
Answer:
Number of moles = 2.8 mol
Explanation:
Given data:
Number of moles of water = ?
Volume of water = 50 mL
Density of water = 1.00 g/cm³
Solution:
1 cm³ = 1 mL
Density = mass/ volume
1.00 g/mL = mass/ 50 mL
Mass = 1.00 g/mL× 50 mL
Mass = 50 g
Number of moles of water:
Number of moles = mass/molar mass
Number of moles = 50 g / 18 g/mol
Number of moles = 2.8 mol
Suspension. The particles are big enough for the eye to see, and will separate if left sitting.