1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
koban [17]
4 years ago
15

Two astronauts in space with a baseball decide to play catch to pass the time. In the language of conservation of momentum, desc

ribe what happens to each astronaut as they start to toss the ball back and forth
Physics
2 answers:
IceJOKER [234]4 years ago
7 0

Answer:  Suppose that the first astronaut is still in place, then the full momentum of that astronaut is zero.

Now, when the astronaut throws the ball, now the ball has momentum, so the astronaut moves in the opposite direction to conserve the momentum (the movement of the arm also creates a response in the body of the astronaut)

(all of this can be explained also by the third Newton's law, for example, the astronaut that accelerates the baseball also experiences a force that the baseball does in him)

Usually, in the earth, the force of gravity keeps the players in place, but in the space, this is not the case, so the tiny force that the ball does in the astronaut is enough to accelerate the astronaut.

It is the same for the other one, the ball comes with a little bit of momentum, so when he catches the ball, the momentum must be conserved, so the astronaut will move in the same direction that the ball was moving.

Anna35 [415]4 years ago
4 0
As the first astronaut throws the ball, lets assume it goes with v velocity and the mass of the ball be m
the momentum comes out be mv, thus to conserve that momentum the astronaut will move opposite to the direction of the ball's motion with the velocity mv/M (where M is the mass of the astronaut).
You might be interested in
The amplitude of a wave<br> determines the volume of a<br> sound.<br> True<br> O False
Vikki [24]
True the amplitude of a wave determines the volume of a sound
6 0
3 years ago
Which diagram best represents the electric field around a negatively charged conducting sphere? (See pic)
dalvyx [7]
The answer is D !!!!!!!
3 0
3 years ago
Q. A mass of 300g is lifted to a<br> height of 10m<br> 205 by a person. Calculate his work done
sergiy2304 [10]
A=mgh
m=300g=0.3kg
g=9,81 m/s^2
h=10m
A=29.43J
3 0
2 years ago
A ball is thrown horizontally from the top of a building 14.9 m high. The ball strikes the ground at a point 107 m from the base
umka2103 [35]

Answer:

1) t=1.743 sec

2)Vo=61.388  m/sec

3)the x component of its velocity just be- fore it strikes the ground is the same as the  initial velocity of the ball that is=61.388  m/sec

4)Vf=17.08 m/s

Explanation:

1)From second equation of motion we get

h=Vit+(1/2)gt^2

here in case(a): Vi=0 m/s,h=14.9m,,put these values in above equation to find the time the ball is in motion

14.9=(0)*t+(1/2)(9.8)t^2

t^2=14.9/4.9

t^2=3.040 sec

t=1.743 sec

2) s=Vo*t

Putting values we get

107=Vo*1.743

Vo=61.388  m/sec

3)the x component of its velocity just be- fore it strikes the ground is the same as the  initial velocity of the ball that is=61.388  m/sec

4)From third equation of motion we know that

Vf^2-Vi^2=2gh

here Vi=0 m/s,h=14.9 m

Vf^2=Vi^2+2gh=0+2(9.8)(14.9)

Vf^2=292.04

Vf=17.08 m/s

8 0
4 years ago
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
3 years ago
Other questions:
  • If it takes Ashley 6.1 seconds to run at an average speed of 5.7 meters per second, what is the distance (in meters) she covers
    6·1 answer
  • A long wire is known to have a radius greater than 4.0 mm and to carry a current uniformly distributed over its cross section. i
    11·1 answer
  • Suppose all of the apples have a mass of 0.10 kg and one of the apples in the bowl (C) is 1.0 meter off the ground. If the apple
    5·2 answers
  • A 7.28-kilogram bowling ball traveling 8.50 meters per second east collides head-on with a 5.45 kilogram bowling ball traveling
    10·1 answer
  • The impedance of an inductor zind is determined to be 147 ohms at 2000 hz and its dc resistance rl is 25 ohms. what would be the
    10·1 answer
  • | Mixtures can be_____<br> geneous or ______<br> geneous
    7·2 answers
  • Define investigation to show its scientific meaning.
    10·1 answer
  • What is it called when a falling object stops accelerating while it is still falling?
    6·1 answer
  • What is the magnitude (in N/C) and direction of an electric field that exerts a 3.50 ✕ 10−5 N upward force on a −1.55 µC charge?
    15·1 answer
  • Where would you find the sun on this HR diagram?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!