Explanation:
<u>(a)</u>
<u>The measure of material's ability to conduct thermal energy (heat) is known as thermal conductivity.</u> For examples, metals have high thermal conductivity, it means that they are very efficient at conducting heat.<u> The SI unit of heat capacity is W/m.K.</u>
The expression for thermal conductivity is:

Where,
q is the heat flux
is the thermal conductivity
is the temperature gradient.
<u>(b)</u>
<u>Heat capacity for a substance is defined as the ratio of the amount of energy required to change the temperature of the substance and the magnitude of temperature change. The SI unit of heat capacity is J/K.</u>
The expression for Heat capacity is:

Where,
C is the Heat capacity
E is the energy absorbed/released
is the change in temperature
<u>(c)</u>
<u>Thermal diffusivity is defined as the thermal conductivity divided by specific heat capacity at constant pressure and its density. The Si unit of thermal diffusivity is m²/s.</u>
The expression for thermal diffusivity is:

Where,
is thermal diffusivity
is the thermal conductivity
is specific heat capacity at constant pressure
is density
1. Define <em>Viscosity</em>
In physics, <em>Viscosity</em> refers to the level of resistance of a fluid to flow due to internal friction, in other words, viscosity is the result of the magnitude of internal friction in a fluid, as measured by the force per unit area resisting uniform flow. For example, the honey is a fluid with high viscosity while the water has low viscosity.
What are the main differences between viscous and inviscid flows?
Viscous flows are flows that has a thick, sticky consistency between solid and liquid, contain and conduct heat, does not have a rest frame mass density and whose motion at a fixed point always remains constant. Inviscid flows, on the other hand, are flows characterized for having zero viscosity (it does not have a thick, sticky consistency), for not containing or conducting heat, for the lack of steady flow and for having a rest frame mass density
Furthermore, viscous flows are much more common than inviscid flows, while this latter is often considered an idealized model since helium is the only fluid that can become inviscid.
Answer:) The correct answer is B. at the end of the fuel rail.
2) The one who is correct is the Technician A.
Explanation:
Answer:
A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation:
Answer and Explanation:
Gas chromatography separates compounds depending on their **polarity and volatility**. Benzene, m-xylene, and toluene have similar **polarities**, therefore, the main basis for separation is **volatility**. The more volatile a component the ** higher its vapor pressure**, hence the more time it spends in the **gaseous mobile phase**, giving it a **shorter** retention time. Therefore, components of a liquid mixture will elute in order of **increasing boiling points/decreasing volatilities/increasing polarities with the stationary phase**.