Answer:
2.75 × 10⁻⁶ M/s
1.69 × 10⁻⁶ M/s
9.23 × 10⁻⁻⁷ M/s
4.43 × 10⁻⁻⁷ M/s
2.1 × 10⁻⁻⁷ M/s
Explanation:
We have the following information for the isomerization of methyl isonitrile
Time (s) [CH₃NC] (M)
0 0.0165
2000 0.0110
5000 0.00591
8000 0.00314
12000 0.00137
15000 0.00074
To calculate the average rate of reaction (r) for each interval, we need to use the following expression:
r = -Δ[CH₃NC]/Δt
Interval 0-2000 s
r = - (0.0110 M-0.0165 M)/2000 s - 0 s = 2.75 × 10⁻⁶ M/s
Interval 2000-5000 s
r = - (0.00591 M-0.0110 M)/5000 s - 2000 s = 1.69 × 10⁻⁶ M/s
Interval 5000-8000 s
r = - (0.00314 M-0.00591 M)/8000 s - 5000 s = 9.23 × 10⁻⁻⁷ M/s
Interval 8000-12000 s
r = - (0.00137 M - 0.00314 M)/12000 s - 8000 s = 4.43 × 10⁻⁻⁷ M/s
Interval 12000-15000 s
r = - (0.00074 M - 0.00137 M)/15000 s - 12000 s = 2.1 × 10⁻⁻⁷ M/s
Answer:
8)acids are electron pair acceptors and bases are electron pair donors
9)monoprotic
10)weak acids
Answer:
magnesium metal melts = physical change
magnesium metal ignites = chemical change
Explanation:
<em>Physical changes</em> are those in which the identity of the subtance <u>remains unaltered</u>. No new compounds are formed. They involve generally changes in <u>agreggation states of matter</u>: solid, liquid or gas. The first experiment, in which magnesium metal melts is a physical change because it only changes the state of matter, from solid to liquid, but it is still magnesium metal.
Conversely, <em>chemical changes</em> involve atoms combinations to form new compounds. The second experiment, in which magnesium metal ignites, is a chemical change. After the change, magnesium metal is no longer the metal but a metal oxide.
1 moles lithium or 6.941 grams