10.92N
Explanation:
Given parameters:
Mass of truck = 2.964kg
Velocity of truck = 7m/s
Time taken = 1.9s
Unknown:
Average force on the car = ?
Solution:
According to newton's third law of motion "action and reaction are equal and opposite".
The force with which the truck struck the fence is the same as the force the fence acted on the truck with but in another direction.
From newton's second law:
Force = mass x acceleration
We know that acceleration is the change in velocity with time;
acceleration =
Force = mass x
Force =
= 10.92N
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Answer:
a) 4.49Hz
b) 0.536kg
c) 2.57s
Explanation:
This problem can be solved by using the equation for he position and velocity of an object in a mass-string system:

for some time t you have:
x=0.134m
v=-12.1m/s
a=-107m/s^2
If you divide the first equation and the third equation, you can calculate w:

with this value you can compute the frequency:
a)

b)
the mass of the block is given by the formula:

c) to find the amplitude of the motion you need to know the time t. This can computed by dividing the equation for v with the equation for x and taking the arctan:

Finally, the amplitude is:

The answer is distressing
<span>From the point of view of the astronaut, he travels between planets with a speed of 0.6c. His distance between the planets is less than the other bodies around him and so by applying Lorentz factor, we have 2*</span>√1-0.6² = 1.6 light hours. On the other hand, from the point of view of the other bodies, time for them is slower. For the bodies, they have to wait for about 1/0.6 = 1.67 light hours while for him it is 1/(0.8) = 1.25 light hours. The remaining distance for the astronaut would be 1.67 - 1.25 = 0.42 light hours. And then, light travels in all frames and so the astronaut will see that the flash from the second planet after 0.42 light hours and from the 1.25 light hours is, 1.25 - 0.42 = 0.83 light hours or 49.8 minutes.