In collision that are categorized as elastic, the total kinetic energy of the system is preserved such that,
KE1 = KE2
The kinetic energy of the system before the collision is solved below.
KE1 = (0.5)(25)(20)² + (0.5)(10g)(15)²
KE1 = 6125 g cm²/s²
This value should also be equal to KE2, which can be calculated using the conditions after the collision.
KE2 = 6125 g cm²/s² = (0.5)(10)(22.1)² + (0.5)(25)(x²)
The value of x from the equation is 17.16 cm/s.
Hence, the answer is 17.16 cm/s.
Answer: The reason for the differences in density is the composition of rock in the plates. When two plates come in contact with each other through plate tectonics, scientists can use the density of the plates to predict what will happen. Whichever plate is more dense will sink, and the less dense plate will float over it.
Explanation:
Hope this helps ( not copied and pasted, this answer was done by me so I don't know if it's good or not)
Answer:
See, the string is made of nickel and steel (iron+carbon), materials that are ferromagnetic. That is, a magnet attracts guitar strings. When this ferromagnetic metal vibrates in the magnetic field of the pickup, that disturbs the red field lines which also cross through the coil (not shown).
Explanation:
Answer:
Explanation:
same idea as before Liam, first, find the parallel resistance in 35 || 20
(35*20) / (35+20) = 700 / 55 = 12.727272 ohms
now add the 12.727272 + 15 = 27.727272 ohms total resistance
V = IR
10 = I * 27.727272
10 / 27.727272 = I
0.360655 = I
V = IR (again, but across the 15 ohm resistor)
V = 0.360655 * 15
V = 5.4098
Answer
Radius of the wheel r = 2.1 m
Moment of inertia I = 2500 Kg m²
Tangential force applied F = 18 N
Time interval t = 16 s
Initial angular speed ω1 = 0
Final angular speed ω2 = ?
Let α be the angular acceleration.
Torque applied τ = Iα
F r = Iα
Angular acceleration α = F r/I
= 
= 0.015 rad/s²
(a)From rotational kinematic relation
Final angular speed ω₂ = ω₁ + αt
= 0 + (0.015 rad/s^2 * 16 s)
= 0.24 rad/s
(b) Work done W = 0.5 Iω₂² - (1/2)Iω₁²
= 0.5*( 2500 Kg m²)(0.24 rad/s)^2 - 0
= 72 J
(c) Average power supplied by the child P = W/t = 
= 4.5 watt