Explanation:
Below is an attachment containing the solution.
Answer:
Elastically
Explanation:
A rock that has deformed Elastically under stress keeps its new shape when the stress is released.
In elastic deformation the original shape of the object is regained when the stress is removed. Whereas in plastic deformation the original shape is parmanently deformed with the application of stress.
The voltage across an inductor ' L ' is
V = L · dI/dt .
I(t) = I(max) sin(ωt)
dI/dt = I(max) ω cos(ωt)
V = L · ω · I(max) cos(ωt)
L = 1.34 x 10⁻² H
ω = 2π · 60 = 377 /sec
I(max) = 4.80 A
V = L · ω · I(max) cos(ωt)
V = (1.34 x 10⁻² H) · (377 / sec) · (4.8 A) · cos(377 t)
<em>V = 24.25 cos(377 t)</em>
V is an AC voltage with peak value of 24.25 volts and frequency = 60 Hz.
Answer:
a)
s
b) 3.41 mm
Explanation:
a)
We take the speed of light, c =
m/s and the refractive index of glass as 1.517.
Speed = distance/time
Time = distance/speed
Refractive index, n = speed of light in vacuum / speed of light in medium






b)
We take the refractive index of water as 1.333.
Speed in water = speed in vacuum / refractive index of water
Distance = speed * time



d = 3.41 mm
Answer:
No
Explanation:
The reason why no current is produced are basically that, the wavelengths of light in the Balmer transition are reflected, not absorbed in solar panels, hence no current is produced.
The Balmer series consists of lines in the visible spectrum. It corresponds to emission of a photon of light when electrons descend from higher energy levels to the n=2 level in the hydrogen spectrum. The various wavelengths in the Balmer series can be separated by a prism since they are all in the visible region of the electromagnetic spectrum.
In solar panels, light corresponding to the wavelengths in the Balmer series is merely reflected by the panel and not absorbed. Since light is not absorbed, no current can be produced when the panel is irradiated with light corresponding to the wavelengths in the Balmer series.