<span>Lack
of training in getting the vital sign or worst, not knowing the right way to
take the vital sign could contribute to an inaccurate vital sign reading. For example,
if you are tasked to get the respiration of the patient, the rule is to count
inhale and exhale as one. But if you were not able to know this rule, and you
counted inhale as one and exhale as another, this could impair the vital
reading. </span>
Answer:
T'=70.92°C
Explanation:
Given that
V= 100 L=0.1 m³
P=400 KPa
T=25°C
Work done on the air = 15 KJ
W= -15 KJ
If we assume that air is ideal gas
P V = m R T
R=0.287 KJ/kg.K for air
T= 273 + 25 = 298 K
By putting the values
P V = m R T
400 x 0.1 = m x 0.287 x 298
m=0.46 kg
From first law of thermodynamics
Q= ΔU +W
Insulated piston–cylinder , Q=0
ΔU = m Cv ΔT
ΔU = - W
Cv = 0.71 KJ/kg.k for air
0.46 x 0.71 x (T' -25) = 15
T'=70.92 °C
So the final temperature of air is T'=70.92 °C
94.5 million miles.
I hope this helps, please Brainliest me, and have a great night! :D
Answer:
the correct answer is c v₁> 12.5 m / s
Explanation:
This is a one-dimensional kinematics exercise, let's start by finding the link to get up to speed.
v² = v₀² + 2 a₁ x
as part of rest v₀ = 0
a₁ = v² / 2x
a₁ = 25² / (2 120)
a₁ = 2.6 m / s²
now we can find the velocity for the distance x₂ = 60 m
v₁² = 0 + 2 a1 x₂
v₁ = Ra (2 2,6 60)
v₁ = 17.7 m / s
these the speed at 60 m
we see that the correct answer is c v₁> 12.5 m / s
Answer:
Here, m=10 kg
The resultant force acting on the body is
F=(98N)2+(6N)2=10N
Let the resultant force F makes an angle θ w.r.t. 8N force.
From figure, tanθ=8N6N=43
The resultant acceleration of the body is
a=mF=10kg10N=1ms−2
The resulatnt acceleration is along the direction of the resulatnt force.
Hence, the resultant acceleration of the body is 1 ms−2 at an angle of tan−1(43) w.r.t. 8N force.